首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   28篇
化学   408篇
晶体学   5篇
力学   1篇
数学   9篇
物理学   33篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   17篇
  2019年   14篇
  2018年   6篇
  2017年   2篇
  2016年   12篇
  2015年   19篇
  2014年   15篇
  2013年   28篇
  2012年   46篇
  2011年   43篇
  2010年   17篇
  2009年   9篇
  2008年   37篇
  2007年   24篇
  2006年   24篇
  2005年   28篇
  2004年   20篇
  2003年   13篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   6篇
  1985年   1篇
  1984年   3篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1973年   2篇
排序方式: 共有456条查询结果,搜索用时 156 毫秒
451.
The photophysics of indigo as well as of bispyrroleindigo, the basic chromophore of indigo, has been investigated with ab initio electronic-structure calculations. Vertical electronic excitation energies and excited-state potential-energy profiles have been calculated with the CASSCF, CASPT2 and CC2 methods. The calculations reveal that indigo and bispyrroleindigo undergo intramolecular single-proton transfer between adjacent N-H and C=O groups in the (1)ππ* excited state. The nearly barrierless proton transfer provides the pathway for a very efficient deactivation of the (1)ππ* state via a conical intersection with the ground state. While a low-lying S(1)-S(0) conical intersection exists also after double-proton transfer, the latter reaction path exhibits a much higher barrier. The reaction path for trans→cis photoisomerization via the twisting of the central C=C bond has been investigated for bispyrroleindigo. It has been found that the twisting of the central C=C bond is unlikely to play a role in the photochemistry of indigo, because of a large potential-energy barrier and a rather high energy of the S(1)-S(0) conical intersection of the twisted structure. These findings indicate that the exceptional photostability of indigo is the result of rapid internal conversion via intramolecular single-proton transfer, combined with the absence of a low-barrier reaction path for the generation of the cis isomer via trans→cis photoisomerization.  相似文献   
452.
The complexes between the host calix[4]arene (C4A) and various guest molecules such as NH(3), N(2), CH(4), and C(2)H(2) have been investigated via experimental and theoretical methods. The S(1)-S(0) electronic spectra of these guest-host complexes are observed by mass-selected resonant two-photon ionization (R2PI) and laser-induced fluorescence (LIF) spectroscopy. The IR spectra of the complexes formed in molecular beams are obtained by IR-UV double resonance (IR-UV DR) and IR photodissociation (IRPD) spectroscopy. The supramolecular structures of the complexes are investigated by electronic structure methods (density functional and second order perturbation theory). The current results for the various molecular guests are put in perspective with the previously reported ones for the C4A-rare gas (Rg) (Phys. Chem. Chem. Phys. 2007, 126, 141101) and C4A-H(2)O complexes (J. Phys. Chem. A, 2010, 114, 2967). The electronic spectra of the complexes of C4A with N(2), CH(4), and C(2)H(2) exhibit red-shifts of similar magnitudes with the ones observed for the C4A-Rg complexes, whereas the complexes of C4A with H(2)O and NH(3) show much larger red-shifts. Most of the IR-UV DR spectra of the complexes, except for C4A-C(2)H(2), show a broad hydrogen-bonded OH stretching band with a peak at ~3160 cm(-1). The analysis of the experimental results, in agreement with the ones resulting from the electronic structure calculations, suggest that C4A preferentially forms endo-complexes (guests inside the host calizarene cavity) with all the guest species reported in this study. We discuss the similarities and differences of the structures, binding energies, and the nature of the interaction between the C4A host and the various guest species.  相似文献   
453.
Apparatus for a technique based on the dispersive optics of X‐ray absorption fine structure (XAFS) has been developed at beamline BL‐5 of the Synchrotron Radiation Center of Ritsumeikan University. The vertical axis of the cross section of the synchrotron light is used to disperse the X‐ray energy using a cylindrical polychromator and the horizontal axis is used for the spatially resolved analysis with a pixel array detector. The vertically dispersive XAFS (VDXAFS) instrument was designed to analyze the dynamic changeover of the inhomogeneous electrode reaction of secondary batteries. The line‐shaped X‐ray beam is transmitted through the electrode sample, and then the dispersed transmitted X‐rays are detected by a two‐dimensional detector. An array of XAFS spectra in the linear footprint of the transmitted X‐ray on the sample is obtained with the time resolution of the repetition frequency of the detector. Sequential measurements of the space‐resolved XAFS data are possible with the VDXAFS instrument. The time and spatial resolutions of the VDXAFS instrument depend on the flux density of the available X‐ray beam and the size of the light source, and they were estimated as 1 s and 100 µm, respectively. The electrode reaction of the LiFePO4 lithium ion battery was analyzed during the constant current charging process and during the charging process after potential jumping.  相似文献   
454.
Polymers containing silatrane units were prepared by the free radical polymerization of methacryloylsilatrane (MPS), and their conductivities were evaluated. We confirmed that MPS can be polymerized without excessive decomposition of the silatrane units by the radical polymerization initiated by azobisisobutyronitrile. The chemical structure of the polymerized MPS (pMPS) was characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy. The pMPS formed a homogeneous complex with lithium trifluoromethyl sulfonate (LiOTf), although the obtained pMPS/LiOTf complex did not show conductivity. The negligible conductivity was caused by the high glass transition temperature (Tg) of the pMPS matrix, which exceeded 70°C. The pMPS was subsequently utilized as a salt‐dissociation enhancer for the poly(ethylene oxide)‐based polymer electrolyte. MPS was copolymerized with poly[methacryloyl oligo(ethylene oxide)] (pMEO) by free radical polymerization. When the pMEO incorporated a small amount of MPS units (i.e. lower than 15 mol%), the elevation in Tg was not observed, and the conductivity markedly improved. Among the series of copolymers and when compared with pristine pMEO, the copolymer containing 6.3% of MPS units had the maximum conductivity (3.1 × 10?4 S cm?1 at 80°C). The Vogel–Fulcher–Tammann fitting parameters showed that the conductivity was improved by the increase in the number of carrier ions. The enhancement in salt dissociation was presumably due to the homogeneous incorporation of polar MPS units. However, when the MPS unit content exceeded 15 mol%, the conductivity was lowered because of the increase in Tg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
455.
An organoaluminum compound with bulky phenoxide groups as a Lewis acid can accelerate much the living polymerization of alkylene oxide initiated with aluminum porphyrin by the coordinative activation of the monomer. This concept can be extented to the polymerization initiated with aluminum Schiff base and tetraazaannulene complexes.  相似文献   
456.
Metalloporphyrin initiator coupled with an appropriate organometallic Lewis acid catalyst could make possible the first example of living anionic polymerization of oxetane. Lewis acid built-in metalloporphyrins were designed as a new highly active catalyst/initiator system. The concept of monomer activation by Lewis acid was extended to the use of appropriate protonic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号