首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   20篇
  国内免费   5篇
化学   638篇
晶体学   12篇
力学   61篇
数学   71篇
物理学   398篇
  2022年   19篇
  2021年   16篇
  2020年   27篇
  2019年   14篇
  2018年   25篇
  2017年   28篇
  2016年   31篇
  2015年   18篇
  2014年   23篇
  2013年   82篇
  2012年   50篇
  2011年   60篇
  2010年   37篇
  2009年   43篇
  2008年   55篇
  2007年   48篇
  2006年   60篇
  2005年   44篇
  2004年   44篇
  2003年   30篇
  2002年   36篇
  2001年   15篇
  2000年   23篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   7篇
  1994年   14篇
  1993年   15篇
  1992年   9篇
  1991年   19篇
  1990年   12篇
  1989年   12篇
  1988年   11篇
  1987年   7篇
  1986年   10篇
  1985年   14篇
  1984年   18篇
  1983年   8篇
  1982年   16篇
  1981年   16篇
  1980年   13篇
  1979年   16篇
  1978年   17篇
  1977年   12篇
  1976年   14篇
  1973年   16篇
  1966年   4篇
  1956年   7篇
排序方式: 共有1180条查询结果,搜索用时 0 毫秒
81.
Herpes simplex virus (HSV-1) employs heparan sulfate (HS) as receptor for cell attachment and entry. During late-stage infection, the virus induces the upregulation of human heparanase (Hpse) to remove cell surface HS allowing viral spread. We hypothesized that inhibition of Hpse will prevent viral release thereby representing a new therapeutic strategy for HSV-1. A range of HS-oligosaccharides was prepared to examine the importance of chain length and 2-O-sulfation of iduronic moieties for Hpse inhibition. It was found that hexa- and octasaccharides potently inhibited the enzyme and that 2-O-sulfation of iduronic acid is tolerated. Computational studies provided a rationale for the observed structure–activity relationship. Treatment of human corneal epithelial cells (HCEs) infected with HSV-1 with the hexa- and octasaccharide blocked viral induced shedding of HS which significantly reduced spread of virions. The compounds also inhibited migration and proliferation of immortalized HCEs thereby providing additional therapeutic properties.  相似文献   
82.
The effect of methanol on trichloroethylene (TCE) degradation by mixed and pure methylotrophic cultures was examined in batch culture experiments. Methanol was found to relieve growth inhibition ofMethylosinus trichosporium (OB3b) at high (14 mg/L) TCE concentrations. Degradation of TCE was determined by both radiolabeling and gas chromatography techniques. When cultures were grown on methanol over 10 to 14 d with 0.3 mg/L TCE, OB3b degraded 16.89 ±0.82% (mean± SD) of the TCE, and a mixed culture (DT type II) degraded 4.55±0.11%. Mixed culture (JS type I) degraded 4.34±0.06% of the TCE. When grown on methane with 0.3 mg/L TCE, 32.93±2.01% of the TCE was degraded by OB3b, whereas the JS culture degraded 24.3 ±1.38% of the TCE, and the DT culture degraded 34.3 ±2.97% of the TCE. The addition of methanol to cultures grown on methane reduced TCE degradation to 16.21 ±1.17% for OB3b and to 5.08±0.56% for JS. Although methanol reduces the toxicity of TCE to the cultures, biodegradation of TCE cannot be sustained in methanol-grown cultures. Since high TCE concentrations appear to inhibit methane uptake and growth, we suggest the primary toxicity of TCE is directed towards the methane monooxygenase.  相似文献   
83.
Journal of Sol-Gel Science and Technology - Gd (0.1, 0.5, 1.0?mol%) doped ZnO nano phosphor, prepared by wet chemical method followed by sintering in air at 700?°C, was...  相似文献   
84.
Summary A new series of cyano-substituted nitrosylchromium(I) complexes having octahedral stereochemistry around the metal ion, and of general formula, [CrNO(CN)2(L)2(H2O)] (L =o-,m- andp-phenetidines oro-,m-, andp-anisidines) have been isolated in the solid state by interaction of potassium pentacy-anonitrosylchromate(I) monohydrate with the appropriately substituted aniline. The complexes, which have been characterised by elemental analysis, conductance, molecular weight determination, magnetic measurements, e.s.r. and i.r. spectral studies, contain chromium(I) in a low-spin d5-configuration.  相似文献   
85.

Energy conservation continues to play a crucial role in social and economic development. With the remarkable increase in oil prices and exploring solutions for the replacement of fossil fuels, an ecofriendly energy resource has become the priority among more and more people. Keeping the intension for reducing the global warming impact and looking for alternative clean source of energy, solar energy applications such as solar thermal systems, solar water heating and cooling are becoming energy-efficient designs. One of the widely used applications of solar energy is solar water heating systems. Low-cost solar water heaters can cover the domestic needs for water in the range of 100–200 l per day. Solar water heating systems are generally more efficient and advantageous in hot areas. However, the application of solar water heating is still a challenge in winter and sub-zero conditions, having low solar irradiance. In such conditions, solar water heating system cannot produce enough energy, which drives a need for evaluating system component design and improves its performance during low ambient conditions. In this study, detailed design methods for solar water heater components are discussed for cold regions like North Dakota, USA. The type of system chosen in this study is natural circulation-based solar water heating system. The study will also compare the experimental data with previously conducted numerical analysis.

  相似文献   
86.
R67 dihydrofolate reductase (DHFR) is a novel enzyme that confers resistance to the antibiotic trimethoprim. The crystal structure of R67 DHFR displays a toroidal structure with a central active-site pore. This homotetrameric protein exhibits 222 symmetry, with only a few residues from each chain contributing to the active site, so related sites must be used to bind both substrate (dihydrofolate) and cofactor (NADPH) in the productive R67 DHFR?NADPH?dihydrofolate complex. Whereas the site of folate binding has been partially resolved crystallographically, an interesting question remains: how can the highly symmetrical active site also bind and orient NADPH for catalysis? To model this ternary complex, we employed DOCK and SLIDE, two methods for docking flexible ligands into proteins using quite different algorithms. The bound pteridine ring of folate (Fol I) from the crystal structure of R67 DHFR was used as the basis for docking the nicotinamide-ribose-Pi (NMN) moiety of NADPH. NMN was positioned by both DOCK and SLIDE on the opposite side of the pore from Fol I, where it interacts with Fol I at the pore's center. Numerous residues serve dual roles in binding. For example, Gln 67 from both the B and D subunits has several contacts with the pteridine ring, while the same residue from the A and C subunits has several contacts with the nicotinamide ring. The residues involved in dual roles are generally amphipathic, allowing them to make both hydrophobic and hydrophilic contacts with the ligands. The result is a `hot spot' binding surface allowing the same residues to co-optimize the binding of two ligands, and orient them for catalysis.  相似文献   
87.
Geometries of several clusters of water molecules including single minimum energy structures of n‐mers (n=1–5), several hexamers and two structures of each of heptamer to decamer derived from hexamer cage and hexamer prism were optimized. One structural form of each of 11‐mer and 12‐mer were also studied. The geometry optimization calculations were performed at the RHF/6‐311G* level for all the cases and at the MP2/6‐311++G** level for some selected cases. The optimized cluster geometries were used to calculate total energies of the clusters in gas phase employing the B3LYP density functional method and the 6‐311G* basis set. Frequency analysis was carried out in all the cases to ensure that the optimized geometries corresponded to total energy minima. Zero‐point and thermal free energy corrections were applied for comparison of energies of certain hexamers. The optimized cluster geometries were used to solvate the clusters in bulk water using the polarized continuum model (PCM) of the self‐consistent reaction field (SCRF) theory, the 6‐311G* basis set, and the B3LYP density functional method. For the cases for which MP2/6‐311++G** geometry optimization was performed, solvation calculations in water were also carried out using the B3LYP density functional method, the 6‐311++G** basis set, and the PCM model of SCRF theory, besides the corresponding gas‐phase calculations. It is found that the cage form of water hexamer cluster is most stable in gas phase among the different hexamers, which is in agreement with the earlier theoretical and experimental results. Further, use of a newly defined relative population index (RPI) in terms of successive total energy differences per water molecule for different cluster sizes suggests that stabilities of trimers, hexamers, and nonamers in gas phase and those of hexamers and nonamers in bulk water would be favored while those of pentamer and decamer in both the phases would be relatively disfavored. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 90–104, 2001  相似文献   
88.
89.
Hydrogen trioxide (HOOO) radical and other polyoxides of general formula, ROnR (where R stands for hydrogen, other atoms or groups and n?≥?3), are believed to be key intermediates in atmospheric chemistry and biological oxidation reactions. In this contribution, DFT calculations using M06-2X density functional and the 6-31G(d,p) and 6-311+G(d,p) basis sets have been carried out to study different reactions of HOOO radical with guanine such as addition of HOOO radical at the C2, C4, C5, and C8 sites of guanine, abstraction of hydrogen atoms (H1, H2a, and H8) of guanine, and the mechanisms of oxidation of guanine with HOOO radical yielding 8-oxoguanine(a highly mutagenic derivative of guanine) and its radical in gas phase and aqueous media. The polarizable continuum model (PCM) has been used for solvation calculations in aqueous media. Our calculations reveal that the C8 site of guanine is the most reactive site for addition of HOOO radical, and adduct formed at this site would be appreciably stable. The rate constant (\( =\frac{K_bT}{h}{e}^{-\frac{\Delta {E}^b}{RT}} \)) at the C8 site is found to be 6.07?×?107 (2.89?×?107) s?1 at the M06-2X/6-311+G(d,p) level of theory in gas phase (aqueous media). The calculated barrier energy and heat of formation of hydrogen abstraction reactions show that HOOO radical would not abstract hydrogen atoms of guanine. Oxidation of guanine with HOOO radical can occur following two schemes (Scheme 1 and Scheme 2). It is found that formation of 8-oxoguanine radical via Scheme 1 would predominate over formation of 8-oxoguanine via Scheme 2, in a reaction of HOOO radical and guanine. Thus, HOOO radical can be treated as a member of reactive oxygen species (ROS) which play key roles in biological oxidation reactions, in agreement with previous literature reports.  相似文献   
90.
The search of eco-friendly technologies for nano-synthesis is significant to expand their applications in human welfare. Nowadays, various inorganic nanoparticles with beneficial features have been synthesized via physical, chemical, and biological means. Significant biological applications of silver nanoparticles include on-infectious microbes, target drug delivery, cancer and vector-borne disease control. Their syntheses have been tested from plant fungi, bacteria, and viruses. The bacterial mediated synthesis of silver, gold, zinc and other metal leads to a milestone in nano-medicines. Thus, in this review, we focus on the contribution of Bacilli in the synthesis of silver nanoparticles, the mechanism of action and their potential application in the welfare of human beings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号