首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   30篇
  国内免费   4篇
化学   614篇
晶体学   6篇
力学   2篇
数学   44篇
物理学   110篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   18篇
  2019年   15篇
  2018年   15篇
  2017年   11篇
  2016年   20篇
  2015年   25篇
  2014年   24篇
  2013年   23篇
  2012年   62篇
  2011年   65篇
  2010年   18篇
  2009年   27篇
  2008年   50篇
  2007年   45篇
  2006年   47篇
  2005年   44篇
  2004年   34篇
  2003年   30篇
  2002年   24篇
  2001年   21篇
  2000年   6篇
  1999年   10篇
  1998年   4篇
  1997年   4篇
  1996年   9篇
  1994年   6篇
  1993年   4篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1985年   7篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
  1963年   2篇
  1961年   3篇
  1959年   2篇
排序方式: 共有776条查询结果,搜索用时 62 毫秒
31.
On dehydration of La[Co(CN)6]·5H2O, the color of the complex, changes from white to pale blue at around 230°C. Heating the pale blue specimen, the color changes to deep blue at around 290°C. This deep blue specimen is easily rehydrated to a pink one. As reported previously, in the pale blue specimen, Co3+ ions are situated in the center of the D4h crystal field formed by six CN- ions. The deep blue specimen is due to the presence of [Co(CN)4]2- ions in which Co2+ was situated in a Td coordination field formed by four CN- ions and the Co-C bond length is 1.67 Ĺ. The pink species corresponded to trans-[Co(CN)4(H2O)2]2- and the bond lengths of Co-C and Co-O are 1.89 and 1.85 Ĺ, respectively. The Raman spectra of the complex observed at 25°C displays two bands at 2157 and 2176 cm-1 associated with the vibration of C-N bond, and the band of 2157 cm-1 was split into two bands, 2150 and 2156 cm-1, at around 100°C. When the complex was heated to around 230°C, three new bands were observed at 2103, 2116 and 2141 cm-1. The bands of 2103 and 2116 cm-1 were assigned to the stretching vibration of C=N bonding to Co2+. The band of 2141 cm-1 was assigned to the stretching vibration of the inverted CN- as follows: Co-C=N-La→Co-N=C-La. The activation energy for the inversion of CN- was estimated as 67 kJ mol-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
32.
Metal-free tetraazachlorin (TAC), -bacteriochlorin (TAB), and -isobacteriochlorin (TAiB) were characterized by electronic absorption, magnetic circular dichroism (MCD), fluorescence, and time-resolved ESR (TR-ESR) spectroscopy, and by cyclic voltammetry. The results are compared with those of metal-free tetraazaporphyrin (TAP). The potential difference DeltaE between the first oxidation and reduction couples decreases in the order TAP>TAiB>TAC>TAB. The splitting of both the Q and Soret bands decreases in the order TAB>TAC>TAP>TAiB. Corresponding to the split absorption bands, MCD spectra show a minus-to-plus pattern with increasing energy in both the Q and Soret regions, which suggests that the energy difference between the HOMO and second HOMO is larger than that between the LUMO and second LUMO. These spectroscopic properties and redox potentials were reproduced by molecular orbital calculations using the ZINDO/S Hamiltonian. The fluorescence quantum yields of the reduced species are much smaller than that of TAP. The zero-field splitting (ZFS) parameters D and E of the excited triplet states (T1) of these species decrease and increase, respectively, on going from TAP to TAC and further to TAB. The D and E values of TAiB are larger than those of the other species. The results are supported by the absence of interaction between the spin over reduced pyrrole moieties of the HOMO and over the LUMO, and by calculations of ZFS under a half-point-charge approximation.  相似文献   
33.
The formation of a cocrystallized coordination compound, [Pd(3)(D-pen)(3)](2)·[M(en)(3)](ClO(4))(3) (D-H(2)pen = D-penicillamine; M = Co(III) or Rh(III)), from [Pd(3)(D-pen)(3)] and [M(en)(3)](ClO(4))(3) is reported. In this compound, only the Δ-configurational [M(en)(3)](3+) cations were incorporated when its racemic (Δ/Λ) isomer was employed. Besides this enantioselective incorporation of complex cations, this compound was found to show the selective incorporation of ClO(4)(-) as the anion species.  相似文献   
34.
High proton-conducting P2O5-SiO2 glass was applied to the electrolyte of the hydrogen concentration cell for hydrogen gas sensing. 5P2O5·95SiO2 glass was prepared using the sol-gel method and its electrical conductivity and electromotive force were measured at 50°C as a function of both the ambient humidity and hydrogen gas concentration. The electrical conductivities increased with increasing humidity and reached 10–2 S/cm at 90% relative humidity. The electromotive force of the hydrogen concentration cell, where the glass was used as a membrane, showed good Nernstian response to hydrogen pressure in the high relative humidity region.  相似文献   
35.
A series of fused‐ring‐expanded aza‐boradiazaindacene (aza‐BODIPY) dyes have been synthesized by reacting arylmagnesium bromides with phthalonitriles or naphthalenedicarbonitriles. An analysis of the structure–property relationships has been carried out based on X‐ray crystallography, optical spectroscopy, and theoretical calculations. Benzo and 1,2‐naphtho‐fused 3,5‐diaryl aza‐BODIPY dyes display markedly red shifted absorption and emission bands in the near‐IR region (>700 nm) due to changes in the energies of the frontier MOs relative to those of 1,3,5,7‐tetraaryl aza‐BODIPYs. Only one 1,2‐naphtho‐fused aza‐BODIPY of the three possible isomers is formed due to steric effects, and 2,3‐naphtho‐fused compounds could not be characterized because the final BF2 complexes are unstable in solution. The incorporation of a  N(CH3)2 group at the para‐positions of a benzo‐fused 3,5‐diaryl aza‐BODIPY quenches the fluorescence in polar solvents and results in a ratiometric pH response, which could be used in future practical applications as an NIR “turn‐on” fluorescence sensor.  相似文献   
36.
The concentration of129I in soil in Japan was determined by neutron activation analysis. For the activation analysis, pre-irradiation chemical separation of the iodine was carried out by acid decomposition and distillation and post-irradiation treatment was performed by ion exchange and solvent extraction. The concentration of stable iodine and137Cs were also determined and compared with the behavior of129I in soil.Soil samples from Ibaraki, Fukui, Fukushima, and Nagasaki Prefectures were analyzed and129I was detected in amounts ranging from 10–7 to 10–5 Bq/g soil in uncultivated surface soil. There are apparently small variations in the129I concentrations in each of the regions analyzed.From depth profile studies in sandy soil, the iodide form of129I was found to migrate downward at a relatively rapid rate while other species remain longer in the surface soil.  相似文献   
37.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   
38.
A 19F NMR study on the acid-alkaline transition in sperm whale myoglobin reconstituted with a perfluoromethyl heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-trifluoromethylporphyrinatoiron(III), demonstrated that the thermodynamics of the transition is predominantly controlled by the stability of acidic form.  相似文献   
39.
New covalently C60‐conjugated phthalocyanine (Pc) analogues in which the Pc and C60 components are connected by means of a four‐membered ring have been synthesized by taking advantage of a [2+2] cycloaddition reaction of C60 with benzyne units generated from either a phthalocyanine derivative ( 8 ) or its precursor ( 1 ). The reaction of 1 with PhI(OAc)2 and trifluoromethanesulfonic acid (TfOH) followed by the [2+2] cycloaddition of C60 in the presence of tetra‐n‐butylammonium fluoride (TBAF) yielded the C60‐substituted Pc precursor ( 3 ). Mixed condensation of 3 and 4,5‐dibutylsulfonylphthalonitrile ( 4 ) in a thermally promoted template reaction using a nickel salt successfully gave the Pc–C60 conjugate ( 5 ). Results of mass spectrometry and 1H and 13C NMR spectroscopy clearly indicate the formation of the anticipated Pc–C60 conjugate. Direct coupling of C60 with the Pc analogue that contained eight peripheral trimethylsilyl (TMS) groups ( 8 ) also proceeded successfully, such that mono and bis C60‐adducts were detected by their mass, although the isolation of each derivative was difficult. The absorption and magnetic circular dichroism (MCD) spectra of 5 and the reference compound ( 7 ) differ from each other in the Q‐band region, thereby suggesting that the presence of the C60 moiety affects the electronic structure of the conjugate. The reduction and oxidation potentials of 5 and 7 obtained by cyclic voltammetry are comparative, except for the C60‐centered reduction couple at ?1.53 V versus Fc+/Fc in o‐dichlorobenzene (o‐DCB). A one‐electron reduction of 5 and 7 in tetrahydrofuran (THF) by using the sodium mirror technique results in the loss of band intensity in the Q‐band region, whereas the characteristic marker bands for Pc‐ring‐centered reduction appear at around 430, 600, and 900 nm for both compounds. The final spectral shapes of 5 and 7 upon the reduction resemble each other, thus indicating that no significant molecular orbital (MO) interactions between the C60 and Pc units are present for the reduced species of 5 . In contrast, the oxidized species of 5 and 7 generated by the addition of NOBF4 in CH2Cl2 show significantly different absorption spectra from each other. Whereas the broad bands at approximately 400–550 nm of 7 + are indicative of the cationic π‐radical species of metallo‐Pcs and can be assigned to a transition from a low‐lying MO to the half‐filled MO, no corresponding bands were observed for 5 +. These spectral characteristics have been tentatively assigned to the delocalized occupied frontier MOs for 5 +. The experimental results are broadly supported by DFT calculations.  相似文献   
40.
The first example of the control of porphyrinoid chromophore symmetry based on the positional isomerism of peripheral substituents has been achieved by preparing tetraazaporphyrins (TAPs) with C4h, D2h, C2v, and Cs symmetry due to the relative arrangement of peripheral tert‐butylamino and cyano groups as push and pull substituents, respectively. The four structural isomers were successfully isolated and characterized by 1H NMR spectroscopy and X‐ray crystallography. The band morphology in the Q‐band region varies depending on the molecular symmetry due to the significant perturbation introduced into the chromophore by the push and pull substituents. The C4h and C2v isomers exhibit a single Q band, whereas the Q bands of the D2h and Cs isomers show a marked splitting. The magnetic circular dichroism spectra indicate that the push–pull TAPs retain the properties of the 16‐membered 18π‐electron perimeter generally observed for porphyrinoids. Theoretical calculations have demonstrated that the perturbation introduced by the substituents lowers the D4h symmetry of the parent TAP π‐conjugated system, and this results in significant spectral changes. A novel approach to the fine‐tuning of the spectral properties of porphyrinoids based on changes in the chromophore symmetry is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号