首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   24篇
  国内免费   2篇
化学   565篇
晶体学   20篇
力学   10篇
数学   26篇
物理学   102篇
  2023年   2篇
  2022年   7篇
  2021年   3篇
  2020年   5篇
  2019年   9篇
  2018年   3篇
  2016年   19篇
  2015年   10篇
  2014年   16篇
  2013年   43篇
  2012年   39篇
  2011年   39篇
  2010年   25篇
  2009年   27篇
  2008年   25篇
  2007年   40篇
  2006年   48篇
  2005年   47篇
  2004年   45篇
  2003年   26篇
  2002年   39篇
  2001年   15篇
  2000年   19篇
  1999年   11篇
  1998年   6篇
  1997年   6篇
  1996年   13篇
  1995年   10篇
  1994年   2篇
  1993年   12篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   7篇
  1985年   11篇
  1984年   9篇
  1982年   6篇
  1981年   5篇
  1980年   8篇
  1979年   3篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
  1970年   2篇
排序方式: 共有723条查询结果,搜索用时 0 毫秒
61.
Lewis acid and substituent dependency on the regioselectivity of hydrosilylation of propiolate esters 1a-c with tris(trimethylsilyl)silane (2a) was found. The reaction of methyl and ethyl propiolate esters and 2a without Lewis acid and in the presence of EtAlCl2 and Et2AlCl gave beta-silicon-substituted Z-alkenes 3 selectively. On the other hand, reaction in the presence of AlCl3 in dichloromethane gave alpha-silicon-substituted alkenes 4. In the case of trifluoroethyl propiolate ester 1c, reaction with aluminum chloride-based Lewis acids gave alpha-silicon-substituted alkenes 4 exclusively. Two competitive mechanisms, free-radical and ionic, are proposed as the source of the complementary regioselectivity displayed in these reactions. A transition state of the radical-forming step was obtained computationally. The reaction of various reactive acetylene substrates and 2a without Lewis acid and without solvent at room temperature gave beta-silicon-substituted Z-alkenes 3 selectively.  相似文献   
62.
Cheletropic additions forming cyclopropane rings were studied theoretically. Ten addition paths were traced by means of density-functional-theory calculations. Two 1,4-dienes, 1,4-pentadiene, and tricyclo[5.3.1.04,9]undeca-2,5-diene were adopted as substrates. CO, SO2, C2H5PCl2, CCl2 and SiCl2 were employed as cheletropic reagents (Xs). An orbital correlation diagram of the Woodward–Hoffmann (W–H) rule and frontier molecular orbital (FMO) interactions between them were investigated in detail. The FMO interactions, HOMO (1,4-diene)lumo (X) and homo (X)LUMO (diene), work reasonably for the progress of the reactions. Those cause the formation of two C–X bonds and a cyclopropane ring, and alternation of double bonds to single bonds. All the additions are concerted. The easiness of the ring formation depends upon the energy gap between HOMO and lumo and that between homo and LUMO, and the spatial directions of HOMO and LUMO extensions. Symmetry conservation of the W–H rule does not hold necessarily for those addition paths. The symmetry-breaking was discussed in terms of FMO interactions.Acknowledgement This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan and by Nishida Memorial Foundation for Fundamental Chemical Research.  相似文献   
63.
64.
Three reduced graphene oxide nanocomposites were employed to achieve the simultaneous electrochemical determination of multi-drugs including acetaminophen (ACTM), carbendazim (CB) and ciprofloxacin (CFX). All nanocomposite modified electrodes showed improved current responses for three drugs. Notably cauliflower-like platinum nanoparticles decorated reduced graphene oxide modified electrode (or Pt−RGO/GCE) exhibited the best performance in terms of electrochemical stability. Using Pt−RGO/GCE, the linear detect ranges of 30–120 μM, 25–115 μM and 10–25 μM, and detection limit values of 3.49, 2.96, and 1.53 μM were achieved for ACTM, CB and CFX respectively. The electrode was further used for the successful determination of above drugs in tap and river water using differential pulse voltammetry. From the obtained results, we believe that Pt-RGO/GCE is highly promising for the fabrication of robust electrochemical sensors for simultaneously determining ACTM, CB and CFX or similar types of drugs in the future.  相似文献   
65.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
66.
Since few examples of 10,11‐didehydrogenated (3‐ethynyl) cinchona alkaloids have been utilized as organocatalysts in asymmetric reaction, we synthesized 10,11‐didehydrogenated cinchonidine. The 3‐vinyl group of cinchonidine was transformed into a 3‐ethynyl functionality. Based on the resulting 10,11‐didehydrogenated cinchonidine, the corresponding quaternary ammonium salt and its dimers were prepared. The ion‐exchange reaction between the quaternary ammonium salt and sodium sulfonate produced the quaternary ammonium sulfonate as a stable ionic compound. Chiral ionic polymers were then synthesized by the ion‐exchange polymerization of the 10,11‐didehydrogenated cinchonidinium salt dimer and a disulfonate. The chiral ionic polymers were found to be capable of efficiently catalyzing the asymmetric alkylation of N‐(diphenylmethylene)glycine tert‐butyl ester. The enantioselectivities obtained with the polymeric catalysts were higher than those obtained with the corresponding monomeric catalyst. Dimers of 10,11‐didehydrogenated cinchonidinium salts were prepared. Treatment of the dimer with disodium disulfonate gave the chiral ionic polymers, which showed high catalytic activity in asymmetric benzylation of N‐(diphenylmethylen)glycine tert‐butyl ester. The polymeric catalysts were reused several times without the loss of catalytic activity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 621–627  相似文献   
67.
68.
Static light scattering measurements were performed on dilute solutions of monodisperse poly(ethylene oxide) (PEO) in methanol at 25°C. PEOs of five different molecular weights ranging from nominal Mw = 8.6 × 104 to 9.13 × 105 were used. Linear Zimm plots were obtained for all the PEO samples: no downturn was observed at small angles, indicating that no large aggregates of PEO molecules exist in the solution. From the plots, values of the weight-average molecular weight, Mw, the radius gyration, RG, and the second virial coefficient, A2, were successfully determined for respective PEOs. Observed relationship between RG and Mw indicates that methanol is certainly a good solvent for the polymer. © 1996 John Wiley & Sons, Inc.  相似文献   
69.
Applied Biochemistry and Biotechnology - A NADPH/NADH-dependent xylose reductase gene was isolated from the xylose-assimilating yeast,Pichia stipitis. DNA sequence analysis showed that the gene...  相似文献   
70.
The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6(OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈−1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from −0.9 V to <−1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号