首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14980篇
  免费   2613篇
  国内免费   2526篇
化学   11877篇
晶体学   195篇
力学   659篇
综合类   256篇
数学   1587篇
物理学   5545篇
  2024年   45篇
  2023年   277篇
  2022年   479篇
  2021年   493篇
  2020年   606篇
  2019年   635篇
  2018年   532篇
  2017年   506篇
  2016年   793篇
  2015年   836篇
  2014年   896篇
  2013年   1184篇
  2012年   1315篇
  2011年   1392篇
  2010年   998篇
  2009年   1011篇
  2008年   1077篇
  2007年   953篇
  2006年   939篇
  2005年   845篇
  2004年   665篇
  2003年   587篇
  2002年   620篇
  2001年   456篇
  2000年   410篇
  1999年   315篇
  1998年   197篇
  1997年   181篇
  1996年   171篇
  1995年   136篇
  1994年   120篇
  1993年   97篇
  1992年   70篇
  1991年   53篇
  1990年   43篇
  1989年   36篇
  1988年   24篇
  1987年   26篇
  1986年   23篇
  1985年   19篇
  1984年   8篇
  1983年   9篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1957年   5篇
  1936年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Few studies on orthosilicate cathodes co‐doped with two cations have been reported until now. Here, we report the synthesis of Mn and Al co‐doped Li2Fe0.8?xMn0.2AlxSiO4 (x = 0.05 and 0.1) by a solid‐state reaction route and characterized by X‐ray diffraction (XRD), particle size analysis, scanning electron microscopy (SEM), galvanostatic charge/discharge tests, and capacity intermittent titration technique (CITT), as compared to the single‐doped Li2Fe0.8Mn0.2SiO4. Though the co‐doping leads to a slight decreased capacity owing to the increased impurity and Al3+ inertia, a better cycling performance is obtained as expected. Especially when x is 0.05, the modified sample (Li2Fe0.75Mn0.2Al0.05SiO4) shows an initial discharge capacity of 159.3 mAh/g and high capacity retention of 78% after 50 charge/discharge cycles. The present work indicates that a synergistic effect of Mn and Al co‐substitution at the Fe site could partly make up the disadvantage of single Mn doping, and might provide an effective guide for the dopant incorporation to Li2FeSiO4 systems.  相似文献   
982.
MGMT protein, which has been associated with resistance to antitumor alkylation drugs for many patients, is a very useful prognostic marker to provide a guide for therapeutic decisions. Considering the large number of cellular samples that have to be handled daily at the hospitals, it is thus important to develop a rapid and simple analytical method to distinguish MGMT activity in different types of cells. In this paper, we describe a MGMT‐activated fluorescence turn‐on probe for the rapid no‐wash imaging of MGMT in living cells. The probe consists of a specific MGMT suicide pseudosubstrate, O6‐benzyl‐guanine and an environment‐sensitive fluorophore, SBD. In the presence of MGMT, the enzyme transfers SBD to the protein active site where the hydrophobic surrounding causes the fluorophore to exhibit more than 50‐fold fluorescence enhancement. With this probe, bright fluorescence was observed for MGMT‐positive, Hela S3 and MCF‐7 cells, while MGMT‐deficient CHO cells displayed no fluorescence. We believe that this fluorescence activation probe design can also be extended to detect other transferases, for which there are still no effective methods to image them in living cells.  相似文献   
983.
A series of Co-modified Ce0.5Zr0.5O2 catalysts with different concentrations of Co (mass %: 0, 2, 4, 6, 8, 10) was investigated for diesel soot combustion. Ce0.5Zr0.5O2 was prepared using the coprecipitation method and Co was loaded onto the oxide using the incipient wetness impregnation method. The activities of the catalysts were evaluated by thermogravimetric (TG) analysis and temperature-programmed oxidation (TPO) experiments. The results showed the soot combustion activities of the catalysts to be effectively improved by the addition of Co, 6 % Co/Ce0.5Zr0.5O2 and that the 8 % Co/Ce0.5Zr0.5O2 catalysts exhibited the best catalytic performance in terms of lower soot ignition temperature (Ti at 349°C) and maximal soot oxidation rate temperature (Tm at 358°C). The reasons for the improved activity were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These results revealed that the presence of Co could lower the reduction temperature due to the synergistic effect between Co and Ce, thereby improving the activity of the catalysts in soot combustion. The 6 % Co catalyst exhibited the best catalytic performance, which could be attributed to the greater amounts of Co3+ and surface oxygen species on the catalyst.  相似文献   
984.
We present a general theory to model the spatially resolved non‐resonant Raman images of molecules. It is predicted that the vibrational motions of different Raman modes can be fully visualized in real space by tip‐enhanced non‐resonant Raman scattering. As an example, the non‐resonant Raman images of water clusters were simulated by combining the new theory and first‐principles calculations. Each individual normal mode gives rise its own distinct Raman image, which resembles the expected vibrational motions of the atoms very well. The characteristics of intermolecular vibrations in supermolecules could also be identified. The effects of the spatial distribution of the plasmon as well as nonlinear scattering processes were also addressed. Our study not only suggests a feasible approach to spatially visualize vibrational modes, but also provides new insights in the field of nonlinear plasmonic spectroscopy.  相似文献   
985.
The design of advanced catalysts for organic reactions is of profound significance. During such processes, electrophilicity and nucleophilicity play vital roles in the activation of chemical bonds and ultimately speed up organic reactions. Herein, we demonstrate a new way to regulate the electro‐ and nucleophilicity of catalysts for organic transformations. Interface engineering in two‐dimensional heteronanostructures triggered electron transfer across the interface. The catalyst was thus rendered more electropositive, which led to superior performance in Ullmann reactions. In the presence of the engineered 2D Cu2S/MoS2 heteronanostructure, the coupling of iodobenzene and para‐chlorophenol gave the desired product in 92 % yield under mild conditions (100 °C). Furthermore, the catalyst exhibited excellent stability as well as high recyclability with a yield of 89 % after five cycles. We propose that interface engineering could be widely employed for the development of new catalysts for organic reactions.  相似文献   
986.
Inorganic nanowire arrays hold great promise for next‐generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution‐liquid‐solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low‐temperature solution synthesis. As a proof‐of‐concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires.  相似文献   
987.
p53 is a tumor‐suppressor protein related to the cell cycle and programmed cell apoptosis. Herein, dual‐targeting nanovesicles are designed for in situ imaging of intracellular wild‐type p53 (WTp53) and mutant p53 (MUp53). Nanovesicle‐encapsulated plasmonic gold nanoparticles (AuNPs) were functionalized with consensus DNA duplexes, and a fluorescein isothiocyanate (FITC)‐marked anti‐MUp53 antibody was conjugated to the nanovesicle surface. After entering the cytoplasm, the released AuNPs aggregated through recognition of WTp53 and the double‐stranded DNA. The color changes of AuNPs were observed using dark‐field microscopy, which showed the intracellular WTp53 distribution. The MUp53 location was detected though the immunological recognition between FITC‐labeled anti‐MUp53 and MUp53. Thus, a one‐step incubation method for the in situ imaging of intracellular WTp53 and MUp53 was obtained; this was used to monitor the p53 level under a drug treatment.  相似文献   
988.
Miniaturized liquid–liquid interfacial reactors offer enhanced surface area and rapid confinement of compounds of opposite solubility, yet they are unable to provide in situ reaction monitoring at a molecular level at the interface. A picoreactor operative at the liquid–liquid interface is described, comprising plasmonic colloidosomes containing Ag octahedra strategically assembled at the water‐in‐decane emulsion interface. The plasmonic colloidosomes isolate ultrasmall amounts of solutions (<200 pL), allowing parallel monitoring of multiple reactions simultaneously. Using the surface‐enhanced Raman spectroscopy (SERS) technique, in situ monitoring of the interfacial protonation of dimethyl yellow (p‐dimethylaminoazobenzene (DY)) is performed, revealing an apparent rate constant of 0.09 min?1 for the first‐order reaction. The presence of isomeric products with similar physical properties is resolved, which would otherwise be indiscernible by other analytical methods.  相似文献   
989.
Palladium(II) complexes are generally reactive toward substitution/reduction, and their biological applications are seldom explored. A new series of palladium(II) N‐heterocyclic carbene (NHC) complexes that are stable in the presence of biological thiols are reported. A representative complex, [Pd(C^N^N)(N,N′‐nBu2NHC)](CF3SO3) ( Pd1 d , HC^N^N=6‐phenyl‐2,2′‐bipyridine, N,N′‐nBu2NHC=N,N′‐di‐n‐butylimidazolylidene), displays potent killing activity toward cancer cell lines (IC50=0.09–0.5 μm ) but is less cytotoxic toward a normal human fibroblast cell line (CCD‐19Lu, IC50=11.8 μm ). In vivo anticancer studies revealed that Pd1 d significantly inhibited tumor growth in a nude mice model. Proteomics data and in vitro biochemical assays reveal that Pd1 d exerts anticancer effects, including inhibition of an epidermal growth factor receptor pathway, induction of mitochondrial dysfunction, and antiangiogenic activity to endothelial cells.  相似文献   
990.
A rapid and efficient method using high‐speed counter‐current chromatography was established for the bioassay‐guided separation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme. Under the bioassay guidance, the ethyl acetate extract with the best IC50 value of 0.37 ± 0.07 μg/mL exhibited a potential protein tyrosine phosphatase 1B inhibitory activity, which was further separated by high‐speed counter‐current chromatography. The separation was performed with a two‐phase solvent system composed of n‐hexane/methanol/water (5:4:1, v/v). As a result, dibutyl phthalate (19.7 mg) with the purity of 95.3% was obtained from 200 mg of the ethyl acetate extract. Its IC50 was 14.05 ± 0.06 μM, which was further explained by molecular docking. The result of molecular docking showed that dibutyl phthalate enfolded in the catalytic site of protein tyrosine phosphatase 1B. The main force between dibutyl phthalate and protein tyrosine phosphatase 1B was the hydrogen bond interaction with Gln266. In addition, hydrogen bond, van der Waals force and hydrophobic interaction with the amino acids (Ala217, Ile219, and Gly220) were also responsible for the stable protein‐ligand complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号