首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   9篇
  国内免费   9篇
化学   92篇
晶体学   1篇
力学   9篇
数学   14篇
物理学   13篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   7篇
  2011年   9篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   10篇
  2005年   8篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
111.
The photoionization efficiency (PIE) spectra and ionization potentials are reported for scandium cluster monoxides (Sc n O,n=5–36). As found for other transition metal clusters, strong dependence of ionization potential on cluster size is found for small clusters, with the ionization potentials of larger clusters decreasing relatively smoothly with increasing size. The IPs are 0.6–0.8 eV lower than that predicted by conducting spherical droplet model.Performed at Argonne National Laboratory  相似文献   
112.
At atmospheric pressure, the usual flow conditions in the cold wall horizontal rectangular thermal CVD reactors correspond to steady longitudinal thermoconvective rolls that make non-uniform vapour depositions, in shape of longitudinal parallel ridges. In order to get more uniform depositions, the pressure is generally lowered under the atmospheric pressure to promote forced convection flows, instead of mixed convection ones. In the present paper, using three-dimensional direct numerical simulations, we propose and analyse a method to get uniform deposition without lowering the pressure in the reactor. It consists in adequately exciting the parallel thermoconvective rolls at channel inlet to make them unsteady, periodic and sinuous in order to get a uniform time average of the deposition. This method is shown to be adapted for the horizontal and rectangular APCVD reactors with large longitudinal and transversal aspect ratios, when the Reynolds number of the gas flow is O(100), whatever the value of the surface Damköhler number. This situation is encountered in the online or scrolling APCVD reactors used to deposit coatings on float glass in the flat glass industry for instance. The simulations are based on simplified models for the transport equations (Boussinesq model) and the kinetics of the heterogeneous reactions (deposition model of silicon from hydrogen and silane: SiH4→Si+2H2).  相似文献   
113.
114.
The BiVO4 photoelectrochemical (PEC) electrode in tandem with a photovoltaic (PV) cell has shown great potential to become a compact and cost‐efficient device for solar hydrogen generation. However, the PEC part is still facing problems such as the poor charge transport efficiency owing to the drag of oxygen vacancy bound polarons. In the present work, to effectively suppress oxygen vacancy formation, a new route has been developed to synthesize BiVO4 photoanodes by using a highly oxidative two‐dimensional (2D) precursor, bismuth oxyiodate (BiOIO3), as an internal oxidant. With the reduced defects, namely the oxygen vacancies, the bound polarons were released, enabling a fast charge transport inside BiVO4 and doubling the performance in tandem devices based on the oxygen vacancy eliminated BiVO4. This work is a new avenue for elaborately designing the precursor and breaking the limitation of charge transport for highly efficient PEC‐PV solar fuel devices.  相似文献   
115.
116.
In this work, we report a simple liquid reduction approach to prepare Cu2O hollow microsphere film and hollow nanosphere powder with Cu(OH)2 nanorods as precursor and ascorbic acid as the reductant at 60 °C. When Cu(OH)2 nanorod array film grown on a copper foil is used as the precursor, Cu2O thin film made up of hollow microspheres with average diameter of 1.2 μm is successfully prepared. When the Cu(OH)2 nanorods are scraped from the copper foil and then used as the precursor, Cu2O hollow nanosphere powder with the average diameter of 270 nm is obtained. The samples are characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and ultraviolet-vis light (UV-vis) absorption spectra. A possible formation mechanism of Cu2O hollow spheres is discussed.  相似文献   
117.
In this paper, a mathematical model for a solid avascular tumor growth is studied. The model describes tumor growth with a necrotic core and a time delay in proliferation process. The model was proposed by Byrne and Chaplain, and was studied by M. Bodnar and U. Fory? (see [2]). Sufficient conditions which guarantee existence, uniqueness and stability of steady state are given. The results show that the dynamical behavior of the solutions of the model is similar to that of the solutions for the corresponding non-retarded problem under some assumptions. Our results partially improve the corresponding results given by M. Bodnar and U. Fory?. The results make the research for this model more perfect.  相似文献   
118.
119.
Large-scale single-crystalline hollow nanobowls of pure C(60) were prepared by applying a sonophysical strategy in a binary organic solution. Through the simple adjustment of the concentration of the C(60) /m-xylene solution and the volume ratio of m-xylene to acetonitrile, C(60) nanorings, nanoplates, nanorods, and nanowires were also selectively synthesized. The promise of the C(60) hollow structures as Pt catalyst supports is heightened by the significantly enhanced catalytic activity toward methanol oxidation for a given amount of C(60) used, which demonstrates their potential application in fuel cells.  相似文献   
120.
Pristine fullerene C60 is an excellent electron transport material for state-of-the-art inverted structure perovskite solar cells (PSCs), but its low solubility leaves thermal evaporation as the only method for depositing it into a high-quality electron transport layer (ETL). To address this problem, we herein introduce a highly soluble bowl-shaped additive, corannulene, to assist in C60-assembly into a smooth and compact film through the favorable bowl-ball interaction. Our results show that not only corannulene can dramatically enhance the film formability of C60, it also plays a critical role in forming C60-corannulene (CC) supramolecular species and in boosting intermolecular electron transport dynamics in the ETL. This strategy has allowed CC devices to deliver high power conversion efficiencies up to 21.69 %, which is the highest value among the PSCs based on the solution-processed-C60 (SP-C60) ETL. Moreover, the stability of the CC device is far superior to that of the C60-only device because corannulene can retard and curb the spontaneous aggregation of C60. This work establishes the bowl-assisted ball assembly strategy for developing low-cost and efficient SP-C60 ETLs with high promise for fully-SP PSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号