首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   5篇
化学   166篇
晶体学   4篇
力学   5篇
数学   9篇
物理学   23篇
  2024年   4篇
  2023年   2篇
  2022年   9篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   12篇
  2013年   17篇
  2012年   26篇
  2011年   25篇
  2010年   5篇
  2009年   10篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
  1984年   1篇
  1981年   1篇
  1975年   3篇
  1974年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
81.
We explore the prospects of a perturbation approach for predicting how weak attractive interactions affect collapse thermodynamics of hydrophobic polymers in water. Specifically, using molecular dynamics simulations of model polymers in explicit water, we show that the hydration structure is sensitive to the strength of the van der Waals attractions but that the hydration contribution to the potential of mean force for collapse is not. We discuss how perturbation theory ideas developed for small spherical apolar solutes need to be modified in order to account for the effect of attractions on the conformational equilibria of polymers.  相似文献   
82.
Salts and additives can significantly affect the strength of water-mediated interactions in solution. We present results from molecular dynamics simulations focused on the thermodynamics of hydrophobic hydration, association, and the folding-unfolding of a hydrophobic polymer in water and in aqueous solutions of NaCl and of an osmolyte trimethylamine oxide (TMAO). It is known that addition of NaCl makes the hydration of hydrophobic solutes unfavorable and, correspondingly, strengthens their association at the pair as well as the many-body level (Ghosh, T.; Kalra, A.; Garde, S. J. Phys. Chem. B 2005, 109, 642), whereas the osmolyte TMAO has an almost negligible effect on the hydrophobic hydration and association (Athawale, M. V.; Dordick, J. S.; Garde, S. Biophys. J. 2005, 89, 858). Whether these effects are enthalpic or entropic in origin is not fully known. Here we perform temperature-dependent simulations to resolve the free energy into entropy and enthalpy contributions. We find that in TMAO solutions, there is an almost precise entropy-enthalpy compensation leading to the negligible effect of TMAO on hydrophobic phenomena. In contrast, in NaCl solutions, changes in enthalpy dominate, making the salt-induced strengthening of hydrophobic interactions enthalpic in origin. The resolution of total enthalpy into solute-solvent and solvent-solvent terms further shows that enthalpy changes originate primarily from solvent-solvent energy terms. Our results are consistent with experimental data on the hydration of small hydrophobic solutes by Ben-Naim and Yaacobi (Ben-Naim, A.; Yaacobi, M. J. Phys. Chem. 1974, 78, 170). In combination with recent work by Zangi, Hagen, and Berne (Zangi, R.; Hagen, M.; Berne, B. J. J. Am. Chem. Soc. 2007, 129, 4678) and the experimental data on surface tensions of salt solutions by Matubayasi et al. (Matubayasi, N.; Matsuo, H.; Yamamoto, K.; Yamaguchi, S.; Matuzawa, A. J. Colloid Interface Sci. 1999, 209, 398), our results highlight interesting length scale dependences of salt effects on hydrophobic phenomena. Although NaCl strengthens hydrophobic interactions at both small and large length scales, that effect is enthalpy-dominated at small length scales and entropy-dominated for large solutes and interfaces. Our results have implications for understanding of additive effects on water-mediated interactions, as well as on biocompatibility of osmolyte molecules in aqueous solutions.  相似文献   
83.
Three chromium ternary complexes with metformin (met) as a primary ligand and bipyridine (bipy) or ortho‐phenylenediamine (opda) or ortho‐phenanthroline (phen) as secondary ligand were synthesized. These complexes [Cr (Cl)2(Hmet)(bipy)]‐( 1 ), [Cr (Cl)2(Hmet)(opda)]‐( 2 ) and [Cr (Cl)2(Hmet)(phen)]‐( 3 ) were characterized by LC–MS, elemental analysis, molar conductance, thermal analysis, infrared spectroscopy, electronic spectroscopy. The geometrical structures have been found to be octahedral. Degradation pattern of the compounds is shown by thermal studies. The Kinetic parameters‐ energy of activation (Ea), enthalpy (ΔH), entropy (ΔS) and free energy changes (ΔG) have been determined by thermogravimetric data. Coats‐Redfern integration method with thirteen kinetic models was used to calculate the kinetic and thermodynamic parameters for the degradation of all the complexes. The stabilities of the complexes were obtained from their molecular orbital structures from which the quantum chemical parameters were calculated using the HOMO‐LUMO energies. UV–Visible absorption, fluorescence, and viscosity measurements have been conducted to assess the interaction of the complexes with CT DNA. The complexes showed absorption hyperchromism in its UV–Vis spectrum with DNA. The binding constants Kb from UV–Vis absorption studies were 3.1x104, 4.4x104, 5x104 M?1 for 1, 2, 3 respectively and Stern–Volmer quenching constants (Ksq) from fluorescence studies were 0.137, 0.532, 0.631 for 1, 2, 3 respectively. Finally, viscosity measurements revealed that the binding of the complexes with CT‐DNA could be surface binding, mainly due to groove binding. The activity of complexes towards DNA cleavage decrease in the order of 3 > 2 > 1.The light switching properties of the complexes were also evaluated. The complexes were docked in to B‐DNA sequence, 5′(D*AP*CP*CP*GP*AP*CP*GP*TP*CP*GP*GP*T)‐3′ retrieved from protein data bank (PDB ID: 423D), using Discovery Studio 2.1 software.  相似文献   
84.
85.
The PPAR-γ agonist enhances the insulin sensitivity and avoids the disorganized hyperglycemic by promoting the insulin guided cellular uptake of blood glucose. Therefore, in the present work PPAR-γ has chosen as the target for the molecular docking study to design an effective agonist of the same. By this research work an effort has been made to prepare amide and urea series of 1, 3, 4-thiadiazole derivatives as 4-substituted-N-(5-(4-(1-piperidino)1-piperidinyl)-1,3,4-(2-thiadiazolyl)benzamide (4a-f) and 1-(4-substitutedphenyl)-3-(5-(4-(1-piperidino)1-piperidinyl)-1,3,4-(2-thiadiazolyl)urea (6a-f) . Both the docking score as well as the pharmacological animal study data has been suggested that the electron donating group containing compound 4f and 6f are most potent molecules for the antidiabetic activity close to the standard drug pioglitazone. It was further observed that the unsubstituted aromatic ring containing derivatives have also considerable effect (4a and 6a) than the electron withdrawing containing derivatives. After the comparison of biological data for amide and urea series, it was concluded that the urea (6a-f) series is more effective than the amide series.  相似文献   
86.
The endocrine disrupting compound Bisphenol and its analogues are widely used in food packaging products and can cause serious health hazards. The protein, Lysozyme (Lyz), showing anti-microbial properties, is used as a “natural” food and dairy preservative. Herein, we explored the interaction between Lyz and Bisphenol S (BPS) by multi-spectroscopic and theoretical approaches. Lyz interacts with BPS through static quenching, where hydrophobic force governed the underlying interaction. Molecular docking results reveal that tryptophan plays a vital role in binding, corroborated well with near UV-CD studies. A decrease in the radius of gyration (from 1.43 nm to 1.35 nm) of Lyz substantiates the compactness of the protein conformation owing to such an interaction. This structural alteration experienced by Lyz may alter its functional properties as a food preservative. Consequently, this can degrade the quality of the food products and thereby lead to severe health issues.  相似文献   
87.
The α‐chymotrypsin activity was tested in aqueous media with the presence of novel cationic amine–based gemini surfactant, with different spacer chain lengths and head group size, and also compared with the cationic cetyltrimethylammonium bromide (CTAB) and cetyltriphenylphosphonium bromide (CTPB) surfactants and aqueous buffer only. The p‐nitrophenyl acetate (PNPA) hydrolysis rate was monitored in the presence of the surfactant concentration at 30°C. Most of these gemini surfactants gave higher catalytic activity as compared to cationic CTAB and CTPB. The highest superactivity was measured in the presence of gemini 16‐12‐16, [dodecanediyl‐1,12‐bis(cetyldimethylammonium bromide)] surfactant at pH 7.5. The catalytic reaction follows the Michaelis–Menten mechanism. The catalytic rate constants, kcat, show the same profile that the catalytic affinity; KM being enhanced with increasing space chain length. The results are favorable for considering that the amine‐based gemini surfactant influences more than both the aqueous and cationic micellar media.  相似文献   
88.
89.
Tri-iso-amyl phosphate is an alternate solvent, proposed in literature as an alternate to the PUREX/UREX solvent tri-n-butyl phosphate for better physical properties. Its PVT properties and accurate expression for estimation of its vapour pressure are not available in the literature. Recently PVT properties of TiAP were estimated by authors and its vapour pressure was measured in a ASTM certified vapor pressure measurement system at temperatures ranging from 273.15 to 373.15 K. In this paper, results of these studies are presented.  相似文献   
90.
Thermophysical properties of reversed TALSPEAK extractant (0.3 M D2EPHA/0.2 M TBP/n-dodecane) were not available in literature. Authors have experimentally measured and correlated several thermophysical properties of RT solvent like density, viscosity, refractive index, acid uptake and flash point. In this paper, results of these studies will be discussed in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号