排序方式: 共有108条查询结果,搜索用时 15 毫秒
81.
Dr. Shashank Mishra Prof. Stéphane Daniele 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(42):9292-9303
The ‘bottom-up’ synthesis of inorganic nanomaterials with precision at the atomic/molecular level offers many opportunities for the design and improvement of the nanomaterials for various applications. Molecular engineering during soft chemical processing for the synthesis of functional nanomaterials enables the desired chemical and physical properties of the precursors, such as solubility or volatility, clean decomposition, control of stoichiometry for multimetallic species to name a few, and leads to easy control of uniform particle size distribution, stoichiometry…. This Minireview illustrates some important aspects of the molecular engineering in light of some recent developments from the molecular synthesis of nanomaterials involving non-silicon metal alkoxide systems for high-tech applications. 相似文献
82.
Bhagyesh Purohit Erwann Jeanneau Thibault Cornier Gilles Ledoux Shashank Mishra 《印度化学会志》2022,99(2):100322
With an objective to have easy access to high quality BaYF5 matrix, we report here new anhydrous precursors of barium and yttrium which show a good compatibility in terms of co-thermal decomposition. These complexes not only fill the void of precursors for Ba-based upconverting (UC) nanomaterials but also provide a way to minimize the –OH concentration around these nanocrystals (NCs) to enhance their UC efficiency without requiring the usual core-shell structure. The precursors and the BaYF5 NCs co-doped with Yb3+/Tm3+ ions were thoroughly characterized. The NCs were studied for upconversion properties and preliminary results are presented here. On the basis of these results, a mechanism for the energy transfer in Yb–Tm system is proposed. 相似文献
83.
Venu Sharma Arem Qayum Kamal K. Kapoor Debaraj Mukherjee Shashank K. Singh Manoj K. Dhar Sanjana Kaul 《印度化学会志》2022,99(6):100490
Synthesis of 14-deoxy-benzylidene-8,17-epoxy-diene-andrographolide derivatives from andrographolide and evaluation of their anticancer activities were described herein. 3,19 hydroxy groups of andrographolide were protected by benzylidene which undergo m-chloroperbenzoic acid mediated epoxydation in moderate yield to form corresponding epoxy derivatives. Thereafter mild basic condition was applied to perform de-hydroxylation at C-14 which resulted in conjugated diene derivatives of benzylidene epoxy andrographolide. These compounds were examined against different human cancer cell lines and were found to inhibit their proliferation at IC50 in the range of 3–20 μM in order to elucidated the role of allylic hydroxyl group at C-14. 相似文献
84.
Calin Lencar Shashank Ramakrishnan Elnaz Erfanian Uttandaraman Sundararaj 《Molecules (Basel, Switzerland)》2022,27(3)
In this work, the effects of blend ratio and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within poly(vinylidene fluoride) (PVDF)/polyethylene (PE) blends are studied. A novel two-step mixing approach was used to pre-localize MWCNTs within the PE phase, and subsequently allow them to migrate into the thermodynamically favored PVDF phase. Light microscopy images confirm that MWCNTs migrate from PE to PVDF, and transmission electron microscopy (TEM) images show individual MWCNTs migrating fully into PVDF, while agglomerates remained trapped at the PVDF/PE interface. PVDF:PE 50:50 and 20:80 polymer blend nanocomposites with 2 vol% MWCNTs exhibit exceptional electromagnetic interference shielding effectiveness (EMI SE) at 10 min of mixing (13 and 16 dB, respectively-at a thickness of 0.45 mm), when compared to 30 s of mixing (11 and 12 dB, respectively), suggesting the formation of more interconnected MWCNT networks over time. TEM images show that these improved microstructures are concentrated on the PE side of the PVDF/PE interface. A modified version of the “Slim-Fast-Mechanism” is proposed to explain the migration behavior of MWCNTs within the PVDF/PE blend. In this theory, MWCNTs approaching perpendicular to the interface penetrate the PVDF/PE interface, while those approaching in parallel or as MWCNT agglomerates remain trapped. Trapped MWCNTs act as barriers to additional MWCNTs, regardless of geometry. This mechanism is verified via TEM and scanning electron microscopy and suggests the feasibility of localizing MWCNTs at the interface of PVDF/PE blends. 相似文献
85.
Ufuk Atamtürk Veronika Brune Shashank Mishra Sanjay Mathur 《Molecules (Basel, Switzerland)》2021,26(17)
Extraordinary low-temperature vapor-phase synthesis of SnS thin films from single molecular precursors is attractive over conventional high-temperature solid-state methods. Molecular-level processing of functional materials is accompanied by several intrinsic advantages such as precise control over stoichiometry, phase selective synthesis, and uniform substrate coverage. We report here on the synthesis of a new heteroleptic molecular precursor containing (i) a thiolate ligand forming a direct Sn-S bond, and (ii) a chelating O^N^N-donor ligand introducing a “launch vehicle”-effect into the synthesized compound, thus remarkably increasing its volatility. The newly synthesized tin compound [Sn(SBut)(tfb-dmeda)] 1 was characterized by single-crystal X-ray diffraction analysis that verified the desired Sn:S ratio in the molecule, which was demonstrated in the direct conversion of the molecular complex into SnS thin films. The multi-nuclei (1H, 13C, 19F, and 119Sn) and variable-temperature 1D and 2D NMR studies indicate retention of the overall solid-state structure of 1 in the solution and suggest the presence of a dynamic conformational equilibrium. The fragmentation behavior of 1 was analyzed by mass spectrometry and compared with those of homoleptic tin tertiary butyl thiolates [Sn(SBut)2] and [Sn(SBut)4]. The precursor 1 was then used to deposit SnS thin films on different substrates (FTO, Mo-coated soda-lime glass) by CVD and film growth rates at different temperatures (300–450 °C) and times (15–60 min), film thickness, crystalline quality, and surface morphology were investigated. 相似文献
86.
Nylon-6 as an engineering polymer and its starting monomer are both costly. Chemical reutilization offers some economic and environmental benefits. Depolymerization of nylon-6 was carried out by the conventional technique of hydrothermal method using various organo-sulfonic acids such as Methane sulfonic acid (MSA), para-toluene sulfonic acid (p-TSA), benzene sulfonic acid (BSA), and tetra-butyl ammonium bromide (TBAB) as a phase transfer catalyst. Various parameters such as temperature, time, normality of acids, and phase transfer catalyst concentration were varied to optimize its parameters, and characterization techniques such as amine value titrations and Fourier transform infrared spectroscopy were used for quantitative measurements. Solid-state 13C NMR was done for structure confirmation. A chemical kinetics interpretation shows degradation mechanism follows first-order kinetics under various catalysts. MSA has the highest reaction rate of 8.49 × 10?2 h?1 at 90°C; it decreases to 7.72 × 10?2 h?1 at 100°C. At the same time, aromatic Sulfonic acids such as p-TSA and BSA have a higher reaction rate of 8.995 × 10?2 h?1 and 5.582 × 10?2 h?1, respectively. The activation energy was lowered as the acidity of organo-sulfonic acids increased as benzene sulfonic acid has the lowest Ea. Followed by p-TSA, and MSA has the highest Ea. Free energy shows a similar kind of value. A simple theoretical model was used to calculate the activation energy. Thermodynamic parameters such as heat of enthalpy and entropy of reaction were evaluated using the Eryig–Polanyi equation. The combined catalytic effect of organo-sulfonic acids and phase-transfer catalyst provides a better environment-friendly method for depolymerizing nylon-6. 相似文献
87.
HfO2-based metal-oxide semiconductor (MOS) capacitors were irradiated with high-energy ion beam to study the irradiation effects in these films. HfO2 thin films deposited by radio frequency (rf)-sputtering were irradiated with 80 MeV O6+ ions. The samples were irradiated and characterized at room temperature. Devices were characterized via 1 MHz capacitance–voltage (C?V) measurements using the midgap method. The irradiation induced dispersion in accumulation and depletion regions with increasing fluence is observed. After irradiation, the midgap voltage shift (Δ V mg) of?0.61 to?1.92 V, flat band voltage shift (Δ V fb) of?0.48 to?2.88 V and threshold voltage shift (Δ V th) of?0.966 to?1.96 V were observed. The change in interface trap charge and oxide trap charge densities after 80 MeV O6+ ions irradiation with fluences were determined from the midgap to flat band stretch out of C?V curves. The results are reported and explained in terms of changes in microstructure and dielectric properties of the HfO2 thin films after irradiation. 相似文献
88.
89.
Leitner A Shekhar S Pouy MJ Hartwig JF 《Journal of the American Chemical Society》2005,127(44):15506-15514
A study of the relationship between the stereochemical elements of a phosphoramidite ligand and the stereoselectivity of iridium-catalyzed amination of allylic carbonates is reported. During catalyst activation, a complex of a phosphoramidite ligand possessing one axial chiral binaphtholate group and two resolved phenethyl substituents converts to a more reactive cyclometalated complex containing one distal chiral substituent at nitrogen, one substituent that becomes part of the metalacycle, and one unperturbed binaphtholate group. Systematic changes were made to the different stereochemical elements. Replacement of the distal chiral phenethyl substituent with a large achiral cycloalkyl group led to a catalyst that reacts with rates and enantioselectivities that are similar to those of the original catalyst with the phenethyl group. Studies of the reactions of diastereomeric ligands containing (R) or (S) binaphtholate groups on phosphorus, along with one (R)-phenethyl and one achiral cyclododecyl group on nitrogen, show that the complexes of the two diastereomeric ligands undergo cyclometalation at much different rates. To access both diastereomeric catalysts and to determine if the reaction can occur selectively with an even simpler ligand containing a phenethyl substituent at nitrogen as the only resolved stereochemical element, the catalyst derived from a phosphoramidite containing a biphenolate group was studied. Catalysts generated from this ligand were shown to react in all cases examined with nearly the same rates, regioselectivities, and enantioselectivities as catalysts derived from the original more elaborate ligand. The absolute stereochemistry of the product implies that the major enantiomer is formed from the (R(a),R(c))-atropisomer of the catalyst containing the biphenolate group. 相似文献
90.
Dong Yang Ruixia Yang Shashank Priya Shengzhong Liu 《Angewandte Chemie (International ed. in English)》2019,58(14):4466-4483
Flexible perovskite solar cells have attracted widespread research effort because of their potential in portable electronics. The efficiency has exceeded 18 % owing to the high‐quality perovskite film achieved by various low‐temperature fabrication methods and matching of the interface and electrode materials. This Review focuses on recent progress in flexible perovskite solar cells concerning low‐temperature fabrication methods to improve the properties of perovskite films, such as full coverage, uniform morphology, and good crystallinity; demonstrated interface layers used in flexible perovskite solar cells, considering key figures‐of‐merit such as high transmittance, high carrier mobility, suitable band gap, and easy fabrication via low‐temperature methods; flexible transparent electrode materials developed to enhance the mechanical stability of the devices; mechanical and long‐term environmental stability; an outlook of flexible perovskite solar cells in portable electronic devices; and perspectives of commercialization for flexible perovskite solar cells based on cost. 相似文献