全文获取类型
收费全文 | 27802篇 |
免费 | 773篇 |
国内免费 | 158篇 |
专业分类
化学 | 18434篇 |
晶体学 | 274篇 |
力学 | 928篇 |
综合类 | 1篇 |
数学 | 2355篇 |
物理学 | 6741篇 |
出版年
2023年 | 167篇 |
2022年 | 432篇 |
2021年 | 605篇 |
2020年 | 576篇 |
2019年 | 584篇 |
2018年 | 333篇 |
2017年 | 317篇 |
2016年 | 768篇 |
2015年 | 631篇 |
2014年 | 793篇 |
2013年 | 1489篇 |
2012年 | 1947篇 |
2011年 | 2135篇 |
2010年 | 1295篇 |
2009年 | 1143篇 |
2008年 | 1741篇 |
2007年 | 1641篇 |
2006年 | 1532篇 |
2005年 | 1428篇 |
2004年 | 1262篇 |
2003年 | 982篇 |
2002年 | 967篇 |
2001年 | 672篇 |
2000年 | 575篇 |
1999年 | 338篇 |
1998年 | 252篇 |
1997年 | 293篇 |
1996年 | 334篇 |
1995年 | 257篇 |
1994年 | 274篇 |
1993年 | 276篇 |
1992年 | 264篇 |
1991年 | 204篇 |
1990年 | 154篇 |
1989年 | 139篇 |
1988年 | 140篇 |
1987年 | 118篇 |
1986年 | 95篇 |
1985年 | 168篇 |
1984年 | 113篇 |
1983年 | 97篇 |
1982年 | 122篇 |
1981年 | 88篇 |
1980年 | 79篇 |
1978年 | 80篇 |
1977年 | 85篇 |
1976年 | 94篇 |
1975年 | 101篇 |
1974年 | 79篇 |
1973年 | 102篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
In this paper, to improve the slow processing speed of the rule-based visible and NIR (near-infrared) image synthesis method, we present a fast image fusion method using DenseFuse, one of the CNN (convolutional neural network)-based image synthesis methods. The proposed method applies a raster scan algorithm to secure visible and NIR datasets for effective learning and presents a dataset classification method using luminance and variance. Additionally, in this paper, a method for synthesizing a feature map in a fusion layer is presented and compared with the method for synthesizing a feature map in other fusion layers. The proposed method learns the superior image quality of the rule-based image synthesis method and shows a clear synthesized image with better visibility than other existing learning-based image synthesis methods. Compared with the rule-based image synthesis method used as the target image, the proposed method has an advantage in processing speed by reducing the processing time to three times or more. 相似文献
32.
Hyosuk Son Young Jun Jung Seong-Cheol Park Il Ryong Kim Joung Hun Park Mi-Kyeong Jang Jung Ro Lee 《Molecules (Basel, Switzerland)》2022,27(18)
Profilins (PFNs) are actin monomer-binding proteins that function as antimicrobial agents in plant phloem sap. Although the roles of Arabidopsis thaliana profilin protein isoforms (AtPFNs) in regulating actin polymerization have already been described, their biochemical and molecular functions remain to be elucidated. Interestingly, a previous study indicated that AtPFN2 with high molecular weight (HMW) complexes showed lower antifungal activity than AtPFN1 with low molecular weight (LMW). These were bacterially expressed and purified to characterize the unknown functions of AtPFNs with different structures. In this study, we found that AtPFN1 and AtPFN2 proteins have LMW and HMW structures, respectively, but only AtPFN2 has a potential function as a molecular chaperone, which has never been reported elsewhere. AtPFN2 has better protein stability than AtPFN1 due to its higher molecular weight under heat shock conditions. The function of AtPFN2 as a holdase chaperone predominated in the HMW complexes, whereas the chaperone function of AtPFN1 was not observed in the LMW forms. These results suggest that AtPFN2 plays a critical role in plant tolerance by increasing hydrophobicity due to external heat stress. 相似文献
33.
Solanki Bal Amit Baran Sharangi Tarun Kumar Upadhyay Fahad Khan Pratibha Pandey Samra Siddiqui Mohd Saeed Hae-Jeung Lee Dharmendra K. Yadav 《Molecules (Basel, Switzerland)》2022,27(19)
Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being. 相似文献
34.
Samiah Hamad Al-Mijalli Nidal Naceiri Mrabti Hayat Ouassou Ryan A. Sheikh Hamza Assaggaf Saad Bakrim Emad M. Abdallah Mohammed Merae Alshahrani Ahmed Abdullah Al Awadh Learn-Han Lee Yusra AlDhaheri Amirhossein Sahebkar Gokhan Zengin Ammar A. Attar Abdelhakim Bouyahya Hanae Naceiri Mrabti 《Molecules (Basel, Switzerland)》2022,27(21)
The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs’ chemical composition was performed by a gas chromatography–mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects. 相似文献
35.
Joseph Lee Mei Wang Goutam Mondal Ikhlas A. Khan Charles R. Yates 《Molecules (Basel, Switzerland)》2022,27(21)
Sample preparation remains both a challenging and time-consuming process in the field of bioanalytical chemistry. Many traditional techniques often require multi-step processes, which can introduce additional errors to the analytical method. Given the complexity of many biological matrices, thorough analyte extraction presents a major challenge to researchers. In the present study, a headspace solid-phase microextraction (HS-SPME) coupled with a GC/Q-ToF-MS method, was developed to quantify in vitro metabolism of β-caryophyllene by both human liver microsome (HLM) and S9 liver fractions. Validation of the method was demonstrated both in terms of linearity (R2 = 0.9948) and sensitivity with a limit of detection of 3 ng/mL and a limit of quantitation of 10 ng/mL. In addition, the method also demonstrated both inter- and intra-day precision with the relative standard deviation (RSD) being less than 10% with four concentrations ranging from 50–500 ng/mL. Since this method requires no solvents and minimal sample preparation, it provides a rapid and economical alternative to traditional extraction techniques. The method also eliminates the need to remove salts or buffers, which are commonly present in biological matrices. Although this method was developed to quantify in vitro metabolism of one analyte, it could easily be adapted to detect or quantify numerous volatiles and/or semi-volatiles found in biological matrices. 相似文献
36.
Globally, plastics are used in various products. Concerns regarding the human body’s exposure to plastics and environmental pollution have increased with increased plastic use. Microplastics can be detected in the atmosphere, leading to potential human health risks through inhalation; however, the toxic effects of microplastic inhalation are poorly understood. In this study, we examined the pulmonary toxicity of polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) in C57BL/6, BALB/c, and ICR mice strains. Mice were intratracheally instilled with 5 mg/kg of PS, PP, or PVC daily for two weeks. PS stimulation increased inflammatory cells in the bronchoalveolar lavage fluid (BALF) of C57BL/6 and ICR mice. Histopathological analysis of PS-instilled C57BL/6 and PP-instilled ICR mice showed inflammatory cell infiltration. PS increased the NLR family pyrin domain containing 3 (NLRP3) inflammasome components in the lung tissue of C57BL/6 and ICR mice, while PS-instilled BALB/c mice remained unchanged. PS stimulation increased inflammatory cytokines, including IL-1β and IL-6, in BALF of C57BL/6 mice. PP-instilled ICR mice showed increased NLRP3, ASC, and Caspase-1 in the lung tissue compared to the control groups and increased IL-1β levels in BALF. These results could provide baseline data for understanding the pulmonary toxicity of microplastic inhalation. 相似文献
37.
Ji-Hae Joo Min-Hui Han Ja-I Kim Jong-Eun Kim Kyung-Hwan Jung Han Sun Oh Young Soo Chung Hyun Jin An Jae Duk Lee Gi-Seong Moon Hyang-Yeol Lee 《Molecules (Basel, Switzerland)》2022,27(23)
The root of Smilax china L. is used in traditional Korean medicine. We found that the Smilax china L. root extract has strong antimicrobial activity against two Cutibacterium acnes strains (KCTC 3314 and KCTC 3320). The aim of this study was to identify the beneficial properties of Smilax china L. extracts for their potential use as active ingredients in cosmetics for the treatment of human skin acne. The high-performance liquid chromatography (HPLC) and liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC/QTOF/MS) methods were used to obtain the profile of secondary metabolites from the ethyl acetate-soluble fraction of the crude extract. Agar diffusion and resazurin-based broth microdilution assays were used to evaluate antimicrobial activity and minimum inhibitory concentrations (MIC), respectively. Among the 24 metabolites, quercetin, resveratrol, and oxyresveratrol were the most potent compounds against Cutibacterium acnes. Minimum inhibitory concentrations of quercetin, resveratrol, and oxyresveratrol were 31.25, 125, and 250 μg/mL, respectively. 相似文献
38.
Ji Hwan Lee Jong Hee Choi Jaihwan Kim Tai Wan Kim Ji-Young Kim Geehoon Chung Ik-Hyun Cho Dae Sik Jang Sun Kwang Kim 《Molecules (Basel, Switzerland)》2022,27(23)
Oxaliplatin-induced peripheral neuropathy (OIPN) is a serious side effect that impairs the quality of life of patients treated with the chemotherapeutic agent, oxaliplatin. The underlying pathophysiology of OIPN remains unclear, and there are no effective therapeutics. This study aimed to investigate the causal relationship between spinal microglial activation and OIPN and explore the analgesic effects of syringaresinol, a phytochemical from the bark of Cinnamomum cassia, on OIPN symptoms. The causality between microglial activation and OIPN was investigated by assessing cold and mechanical allodynia in mice after intrathecal injection of the serum supernatant from a BV-2 microglial cell line treated with oxaliplatin. The microglial inflammatory response was measured based on inducible nitric oxide synthase (iNOS), phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated nuclear factor-kappa B (p-NF-κB) expression in the spinal dorsal horn. The effects of syringaresinol were tested using behavioral and immunohistochemical assays. We found that oxaliplatin treatment activated the microglia to increase inflammatory responses, leading to the induction of pain. Syringaresinol treatment significantly ameliorated oxaliplatin-induced pain and suppressed microglial expression of inflammatory signaling molecules. Thus, we concluded that the analgesic effects of syringaresinol on OIPN were achieved via the modulation of spinal microglial inflammatory responses. 相似文献
39.
Mengyao Yang Xingshu Li Gyoungmi Kim Rui Wang Seong-Jin Hong Chang-Hee Lee Juyoung Yoon 《Chemical science》2022,13(43):12738
Phototherapy has been a promising therapeutic modality for pathological tissue due to its spatiotemporal selectivity and non-invasive characteristics. However, as a core component of phototherapy, a single photosensitizer (PS) nanoplatform integrating excellent therapeutic efficiency and minimal side effects remains an urgent but unmet need. Here, we construct a J-aggregated nano-porphyrin termed MTE based on the self-assembly of methyl-pheophorbide a derivative MPa-TEG (MT) and natural polyphenolic compound epigallocatechin gallate (EGCG). Due to the synergistic interaction between similar large π-conjugated structural EGCG and MT, MTE with small and uniform size is obtained by effectively hindering Ostwald ripening of MT. Noteworthily, MTE not only effectively avoids the inadvertent side effects of phototoxicity during transport thank to the ability of reactive oxygen species (ROS) scavenging, but also achieves two-pathway augmented superior phototherapy: (1) enhancing photodynamic therapy (PDT) via inhibiting the expression of anti-apoptosis protein surviving; (2) achieving adjuvant mild-temperature laser interstitial thermal therapy (LITT) via reducing the tumor thermoresistance on account that MTE inhibits the overexpression of HSP 70 and HSP 90. This research not only offers a facile strategy to construct multicomponent nanoplatforms but also provides a new pathway for efficient and low-toxicity phototherapy, which is beneficial to the future clinical application.J-aggregated nanoporphyrin (MTE) integrates minimal side effects and two-pathway augmented superior phototherapy: enhancing photodynamic therapy (PDT) and achieving adjuvant mild-temperature laser interstitial thermal therapy (LITT). 相似文献
40.
Ju-hong Jang Jeong Woong Lee Min Ji Cho Byungtae Hwang Min-Gi Kwon Dong-Hwan Kim Nam-Kyung Lee Jangwook Lee Young-Jun Park Yong Ryoul Yang Jinchul Kim Yong-Hoon Kim Tae Hyeon An Kyoung-Jin Oh Kwang-Hee Bae Jong-Gil Park Jeong-Ki Min 《Experimental & molecular medicine》2022,54(8):1250
Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon’s hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3−/− mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3−/− mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases.Subject terms: Obesity, Homeostasis 相似文献