首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   2篇
  国内免费   7篇
化学   110篇
晶体学   1篇
力学   2篇
数学   85篇
物理学   56篇
  2022年   3篇
  2021年   9篇
  2020年   8篇
  2019年   6篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   10篇
  2013年   15篇
  2012年   9篇
  2011年   15篇
  2010年   14篇
  2009年   13篇
  2008年   12篇
  2007年   15篇
  2006年   13篇
  2005年   15篇
  2004年   7篇
  2003年   9篇
  2002年   12篇
  2001年   3篇
  1999年   3篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1969年   1篇
  1935年   1篇
排序方式: 共有254条查询结果,搜索用时 156 毫秒
41.
The enantiomerically pure pinene-bipyridine-based receptor, (-) or (+) L(-), diastereoselectively self-assembles in dry acetonitrile in the presence of Ln(III) ions (Ln = La, Pr, Nd, Sm, Eu, Gd, and Tb) to give a C3-symmetrical, pyramidal architecture with the general formula [Ln4(L)9(mu3-OH)](ClO4)2) (abbreviated as tetra-Ln4L9). Three metal centers shape the base: an equilateral triangle surrounded by two sets of helically wrapping ligands with opposite configurations. This part of the structure is very similar to the species [Ln3(L)6(mu3-OH)(H2O)3](ClO4)2) (recently reported by us and abbreviated as tris-LnL2) formed by the ligand and the Ln(III) ions when the reactions are performed in methanol. The tetranuclear structure is completed by a capping, helical unit LnL3 whose chirality is also predetermined by the chirality of the ligand. A complete characterization of these isostructural, chiral compounds was performed in solid state (X-ray, IR) and in solution (ES-MS, NMR, CD, UV-vis and emission spectroscopies). The sign and the intensity of the CD bands in the region of the pi pi* transitions of the bipyridine (absolute Delta epsilon values at 327 nm are about 280 M(-1) x cm(-1)) are highly influenced by the helicity of the capping fragment LnL3. The photophysical properties (lifetime, quantum yield) of the visible (Eu and Tb complexes) and NIR (Nd complex) emitters indicate a good energy transfer between the ligands and the metal centers. The two related superstructures tetra-Ln4L9 and tris-LnL2 can be interconverted in acetonitrile, the switching process depending on the amount of water present in the solvent, the size of the Ln(III) ion, and the concentration. The weak chiral recognition capabilities of the self-assembly leading to the formation of tetra-Ln4L9 either by direct synthesis from a racemic mixture of the ligand and Ln(III) ions or by the conversion of a tris-Ln[(+/-)-L]2 racemate were likewise demonstrated.  相似文献   
42.
Aquation of the investigational anticancer drug trans-[Ru(III)Cl4(Hind)2](-) (1, KP1019) results in the formation of mer,trans-[Ru(III)Cl3(Hind)2(H2O)] (2), which was isolated in high yield (85%) and characterized by spectroscopic methods and X-ray crystallography. Dissolution of 2 in acetone, led to its dimerization into [Ru(III)2(mu-Cl)2Cl4(Hind)4] x 2 (Me)2CO (3) in 79% yield, with release of two water molecules. Complex 2 reacts readily with nucleophilic organic molecules, viz., methanol or dimethyl sulfide, at room temperature by replacement of the aqua ligand to give mer,trans-[Ru(III)Cl3(Hind)2(MeOH)] (4) and mer,trans-[Ru(III)Cl3(Hind)2(Me2S)] (5) in 58 and 64% yield, respectively. By reaction of 2 with DMSO at room temperature or dimethyl sulfide at elevated temperatures trans,trans,trans-[Ru(II)Cl2(Hind)2(Me2S)2] (6) and trans,trans,trans-[Ru(II)Cl2(Hind)2(S-DMSO)2] (7) were prepared in 64 and 75% yield, respectively. Dissolution of 2 in acetonitrile or benzonitrile gave rise to mer,trans-[Ru(III)Cl3(Hind)(HNC(Me)ind)] (8a), mer,trans-[Ru(III)Cl3(Hind)(HNC(Ph)ind)] (8b), and trans,trans-[Ru(III)Cl2(HNC(Me)ind)2]Cl (9) in 67, 50, and 23% yield, respectively, upon metal-assisted iminoacylation of indazole, which is unprecedented for ruthenium(III). Furthermore, complex 2 reacts with the DNA-model bases 9-methyladenine (9-meade) and N6,N6-dimethyladenine (6-me2ade) to yield mer,trans-[Ru(III)Cl3(Hind)2(9-meade)] (10) and mer,trans-[Ru(III)Cl3(Hind)2(6-me2ade)] (11) with the purine bases bound to the Ru(III) center via N7 and N3, respectively. Complex 11 represents the first ruthenium complex in which the coordination of the purine ligand N6,N6-dimethyladenine occurs via N3. In addition, the polymer [Na(EtOAc)2Ru(III)(mu-Cl)4(Hind)2]n (12) was crystallized from ethyl acetate/diethyl ether solutions of Na[trans-Ru(III)Cl4(Hind)2] x 1.5 H2O (1a). The reported complexes were characterized by elemental analysis, IR and UV-vis spectroscopy, ESI mass spectrometry, cyclic voltammetry, and X-ray crystallography. Electrochemical investigations give insight into the mechanistic details of the solvolytic behavior of complex 2. The lability of the aqua ligand in 2 suggests that this complex is a potential active species responsible for the high antitumor activity of trans-[Ru(III)Cl4(Hind)2](-).  相似文献   
43.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   
44.
Two novel compounds, (L(1)H)(2)[SiF(6)] x 2H(2)O (1) and (L(2)H)(2)[SiF(5)(H(2)O)](2) x 3H(2)O (2), resulting from the reactions of H(2)SiF(6) with 4'-aminobenzo-12-crown-4 (L(1)) and monoaza-12-crown-4 (L(2)), respectively, were studied by X-ray diffraction and characterised by IR and (19)F NMR spectroscopic methods. Both complexes have ionic structures due to the proton transfer from the fluorosilicic acid to the primary amine group in L(1) and secondary amine group incorporated into the macrocycle L(2). The structure of 1 is composed of [SiF(6)](2-) centrosymmetric anions, N-protonated cations (L(1)H)(+), and two water molecules, all components being bound in the layer through a system of NH[...]F, NH[...]O and OH[...]F hydrogen bonds. The [SiF(6)](2-) anions and water molecules are assembled into inorganic negatively-charged layers via OH[dot dot dot]F hydrogen bonds. The structure of 2 is a rare example of stabilisation of the complex anion [SiF(5)(H(2)O)](-), the labile product of hydrolytic transformations of the [SiF(6)](2-) anion in an aqueous solution. The components of 2, i.e., [SiF(5)(H(2)O)](-), (L(2)H)(+), and water molecules, are linked by a system of NH[...]F, NH[...]O, OH[...]F, OH[dot dot dot]O hydrogen bonds. In a way similar to 1, the [SiF(5)(H(2)O)](-) anions and water molecules in 2 are combined into an inorganic negatively-charged layer through OH[...]F and OH[...]O interactions.  相似文献   
45.
State of the art CASSCF and CASPT2 calculations have been performed to elucidate the nature of ferromagnetism of CoII-NC-WV pairs in the three-dimensional compound [[WV(CN)2]2[(micro-CN)4CoII(H2O)2]3.4H2O]n, which has been recently synthesized and investigated by a number of experimental techniques (Herrera, J. M.; Bleuzen, A.; Dromzée, Y.; Julve, M.; Lloret, F.; Verdaguer, M. Inorg. Chem. 2003, 42, 7052-7059). In this network, the Co ions are in the high-spin (S = 3/2) state, while the single unpaired electron on the W centers occupies the lowest orbital of the dz2 type of the 5d shell. In agreement with the suggestion made by Herrera et al., we find that the ferromagnetism is due to a certain occupation scheme of the orbitals from the parent octahedral t2g shell on CoII sites, in which the orbital accommodating the unpaired electron is orthogonal to the dz2 orbitals of the surrounding W ions. We investigate the stabilization of such an orbital configuration on the Co sites and find that it cannot be achieved in the ground state of isolated mononuclear fragments [CoII(NC)4(OH2)2]2- for any conformations of the coordinated water molecules and Co-N-C bond angles. On the other hand, it is stabilized by the interaction of the complex with neighboring W ions, which are simulated here by effective potentials. The calculated exchange coupling constants for the CoII-NC-WV binuclear fragments are in reasonable agreement with the measured Curie-Weiss constant for this compound. As additional evidence for the inferred electronic configuration on the Co sites, the ligand-field transitions, the temperature-dependent magnetic susceptibility, and the field-dependent low-temperature magnetization, simulated ab initio for the mononuclear Co fragments, are in agreement with the available data for another compound [WIV[(micro-CN)4-CoII(H2O)2]2.4H2O]n containing diamagnetic W and high-spin Co ions in an isostructural environment.  相似文献   
46.
Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis which protects plants against excess excitation energy and is of crucial importance for their survival and fitness. Recently, carotenoid radical cation (Car*+) formation has been discovered to be a key step for the feedback deexcitation quenching mechanism (qE), a component of NPQ, of which the molecular mechanism and location is still unknown. We have generated and characterized carotenoid radical cations by means of resonant two color, two photon ionization (R2C2PI) spectroscopy. The Car*+ bands have maxima located at 830 nm (violaxanthin), 880 nm (lutein), 900 nm (zeaxanthin), and 920 nm (beta-carotene). The positions of these maxima depend strongly on solution conditions, the number of conjugated C=C bonds, and molecular structure. Furthermore, R2C2PI measurements on the light-harvesting complex of photosystem II (LHC II) samples with or without zeaxanthin (Zea) reveal the violaxanthin (Vio) radical cation (Vio*+) band at 909 nm and the Zea*+ band at 983 nm. The replacement of Vio by Zea in the light-harvesting complex II (LHC II) has no influence on the Chl excitation lifetime, and by exciting the Chls lowest excited state, no additional rise and decay corresponding to the Car*+ signal observed previously during qE was detected in the spectral range investigated (800-1050 nm). On the basis of our findings, the mechanism of qE involving the simple replacement of Vio with Zea in LHC II needs to be reconsidered.  相似文献   
47.
A series of neutral mononuclear lanthanide complexes [Ln(HL)2(NO3)3] (Ln = La, Ce, Nd, Eu, Gd, Dy, Ho) with rigid bidentate ligand, HL (4′-(1H-imidazol-1-yl)biphenyl-4-carboxylic acid) were synthesized under solvothermal conditions. The coordination compounds have been characterized by infrared spectroscopy, thermogravimetry, powder X-ray diffraction and elemental analysis. According to X-ray diffraction, all the complexes are a series of isostructural compounds crystallized in the P2/n monoclinic space group. Additionally, solid-state luminescence measurements of all complexes show that [Eu(HL)2(NO3)3] complex displays the characteristic emission peaks of Eu(III) ion at 593, 597, 615, and 651 nm.  相似文献   
48.
Methods in Riemann–Finsler geometry are applied to investigate bi-Hamiltonian structures and related mKdV hierarchies of soliton equations derived geometrically from regular Lagrangians and flows of non-stretching curves in tangent bundles. The total space geometry and nonholonomic flows of curves are defined by Lagrangian semisprays inducing canonical nonlinear connections (NN-connections), Sasaki type metrics and linear connections. The simplest examples of such geometries are given by tangent bundles on Riemannian symmetric spaces G/SO(n)G/SO(n) provided with an NN-connection structure and an adapted metric, for which we elaborate a complete classification, and by generalized Lagrange spaces with constant Hessian. In this approach, bi-Hamiltonian structures are derived for geometric mechanical models and (pseudo) Riemannian metrics in gravity. The results yield horizontal/vertical pairs of vector sine-Gordon equations and vector mKdV equations, with the corresponding geometric curve flows in the hierarchies described in an explicit form by nonholonomic wave maps and mKdV analogs of nonholonomic Schrödinger maps on a tangent bundle.  相似文献   
49.
The synthesis and characterization of [FeII(trim)2]Cl2 (2), [FeII(trim)2]Br2MeOH (3), and [FeII(trim)2]I2MeOH (4), including the X-ray crystal structure determinations of 2 (50 and 293 K) and 4 (293 K), have been performed and their properties have been examined. In agreement with the magnetic susceptibility results, the M?ssbauer data show the presence of high-spin (HS) to low-spin (LS) crossover with a range of T1/2 larger than 300 K (from approximately 20 K for [FeII(trim)2]F2 (1) to approximately 380 K for 4). All complexes in this series include the same [Fe(trim)2]2+ complex cation: the ligand field comprises a constant contribution from the trim ligands and a variable one originating from the out-of-sphere anions, which is transmitted to the metal center by the connecting imidazole rings and hydrogen bonds. The impressive variation in the intrinsic characteristics of the spin-crossover (SCO) phenomenon in this series is then interpreted as an inductive effect of the anions transmitted to the nitrogen donors through the hydrogen bonds. Based on this qualitative analysis, an increased inductive effect of the out-of-sphere anion corresponds to a decreased SCO temperature T1/2, in agreement with the experimental results. Electronic structure calculations with periodic boundary conditions have been performed that show the importance of intermolecular effects in tuning the ligand field, and thus in determining the transition temperature. Starting with the geometries obtained from the X-ray studies, the [FeII(trim)2]X2 complex molecules 1-4 have been investigated both for the single molecules and the crystal lattices with the local density approximation of density functional theory. The bulk geometries of the complex cations deduced from the X-ray studies and those calculated are in fair agreement for both approaches. However, the trend observed for the transition temperatures of 1-4 disagrees with the trend for the spin-state splittings ES (difference EHS-ELS between the energy of the HS and LS isomers) calculated for the isolated molecules, whereas it agrees with the trend for ES calculated with periodic boundary conditions. The latter calculations predict the strongest stabilization of the HS state for the fluoride complex, which actually is essentially HS above T=50 K, while the most pronounced stabilization of the LS state is predicted for 4, in line with the experimental results.  相似文献   
50.
A di-manganese(III) complex structure was built by an original approach consisting of a two-step procedure. First, the mononuclear complex of the manganese(III) with the Schiff base of the salen-type ligand (H2L) derived from 1,3-bis(3-aminopropyl)tetramethyldisiloxane and 3,5-di-tert-butyl-2-hydroxybenzaldehyde was prepared. The main feature of note is the 12-membered chelate ring formed upon coordination of the Schiff base to central atom, which adopts a distorted N2O4 octahedron environment. In the second step, the acetato co-ligand in this complex is replaced by the carboxylate anion of a dicarboxilic acid, namely adipic acid. This metathesis reaction leads to the formation of dinuclear structure by connecting two manganese centers. The structure, as was determined by X-ray single crystal diffractometry, elemental and spectral analysis, is permethylated dinuclear complex with long aliphatic bridge. Thermal and magnetic properties were studied. In addition, the formation of magnetically induced stripe-ordered domains was highlighted by the magnetic force microscopy (MFM) on films born from diluted solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号