首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
力学   1篇
物理学   27篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
排序方式: 共有28条查询结果,搜索用时 0 毫秒
21.
The evolution of laser-generated MeV, MA electron beams propagating through conductors and insulators has been studied by comparing measurement and modeling of the distribution of MeV protons that are sheath accelerated by the propagated electrons. We find that electron flow through metals is uniform and can be laser imprinted, whereas propagation through insulators induces spatial disruption of the fast electrons. Agreement is found with material dependent modeling.  相似文献   
22.
Laser produced hot electron transport in an overdense plasma is studied by three-dimensional particle-in-cell simulations. Hot electron currents into the plasma generate neutralizing return currents in the cold plasma electrons, leading to a configuration which is unstable to electromagnetic Weibel and tearing instabilities. The resulting current filaments self-organize through a coalescence process finally settling into a single global current channel. The plasma return current experiences a strong anomalous resistivity due to diffusive flow of cold electrons in the magnetic perturbations. The resulting electrostatic field leads to an anomalously rapid stopping of fast MeV electrons (almost 3 orders of magnitude stronger than that through classical collisional effects).  相似文献   
23.
We study the angular distributions of fast electrons, ions, and bremsstrahlung x/ gamma-rays generated during the interaction of an ultrashort intense laser pulse with solid targets. A relation is found on the angular directions for fast electrons and ions as a function of the particle's kinetic energy, experienced Coulomb potential changes, and the incident angle of the laser pulse. It is valid independent of the acceleration mechanisms and the polarization of the laser pulse, as confirmed by particle-in-cell simulations. The angular distribution of bremsstrahlung x/gamma-rays is presented to show explicitly its correlation with the corresponding angular distributions of electrons.  相似文献   
24.
We produced cylindrically imploded plasmas, which have the same density-radius product of the imploded plasma rhoR with the compressed core in the fast ignition experiment and demonstrated efficient fast heating of cylindrically imploded plasmas with an ultraintense laser light. The coupling efficiency from the laser to the imploded column was 14%-21%, implying strong collimation of energetic electrons over a distance of 300 microm of the plasma. Particle-in-cell simulation shows confinement of the energetic electrons by self-generated magnetic and electrostatic fields excited along the imploded plasmas, and the efficient fast heating in the compressed region.  相似文献   
25.
The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.  相似文献   
26.
MeV-proton production from solid targets irradiated by 100-fs laser pulses at intensities above 1x10(20) W cm(-2) has been studied as a function of initial target thickness. For foils 100 microm thick the proton beam was characterized by an energy spectrum of temperature 1.4 MeV with a cutoff at 6.5 MeV. When the target thickness was reduced to 3 microm the temperature was 3.2+/-0.3 MeV with a cutoff at 24 MeV. These observations are consistent with modeling showing an enhanced density of MeV electrons at the rear surface for the thinnest targets, which predicts an increased acceleration and higher proton energies.  相似文献   
27.
Hole boring characteristics of laser beams are studied using two different laser wavelengths in preformed plasmas with overdense regions. We have shown that a whole beam self-focusing is created in plasma with a considerable density scale length using a 1 microm wavelength laser. The whole beam self-focusing of this type could be used for guiding the ultrahigh intense laser pulse to a highly compressed core for studying the feasibility of a fast ignitor. There is a clear difference in the hole-boring characteristics between two laser wavelengths at 1053 and 351 nm, both in the experiment and the simulation. Using the third-harmonic laser, a whole beam self-focusing is never created. The 351-nm laser beam broke up into filaments resulting in plasma jets observed in our interferogram.  相似文献   
28.
The possibility of dynamically shaping mega-ampere electron currents generated in solids by ultraintense laser pulses in various conductor materials has been investigated. By tuning the target ionization dynamics, which depends both on the target material properties and on the input electron beam characteristics, we can control the growth of resistive magnetic fields that feedback on the current transport. As a result, collimation, hollowing, or filamentation of the electron beam can all be obtained. These results are beneficial for applications such as the production of secondary particles and radiation sources and fast ignition of inertial confinement fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号