首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3268篇
  免费   220篇
  国内免费   14篇
化学   2368篇
晶体学   28篇
力学   67篇
数学   414篇
物理学   625篇
  2023年   52篇
  2022年   76篇
  2021年   120篇
  2020年   167篇
  2019年   186篇
  2018年   84篇
  2017年   70篇
  2016年   206篇
  2015年   149篇
  2014年   162篇
  2013年   214篇
  2012年   280篇
  2011年   272篇
  2010年   155篇
  2009年   136篇
  2008年   198篇
  2007年   163篇
  2006年   153篇
  2005年   109篇
  2004年   77篇
  2003年   39篇
  2002年   35篇
  2001年   30篇
  2000年   28篇
  1999年   16篇
  1998年   14篇
  1997年   11篇
  1996年   14篇
  1995年   13篇
  1994年   19篇
  1993年   10篇
  1992年   20篇
  1991年   13篇
  1990年   5篇
  1989年   6篇
  1988年   9篇
  1987年   6篇
  1986年   6篇
  1984年   5篇
  1983年   5篇
  1981年   10篇
  1980年   5篇
  1978年   6篇
  1973年   5篇
  1968年   16篇
  1967年   28篇
  1966年   25篇
  1965年   11篇
  1913年   7篇
  1912年   11篇
排序方式: 共有3502条查询结果,搜索用时 15 毫秒
31.
The diffusion of hydrogen within an hydrogenated amorphous silicon (a‐Si:H) layer is based on a trap limited process. Therefore, the diffusion becomes a self‐limiting process with a decreasing diffusion velocity for increasing hydrogen content. In consequence, there is a strong demand for accurate experimental determination of the hydrogen distribution. Nuclear resonant reaction analysis (NRRA) offers the possibility of a non‐destructive measurement of the hydrogen distribution in condensed matter like a‐Si:H thin films. However, the availability of a particle accelerator for NRR‐analysis is limited and the related costs are high. In comparison, Fourier transform infrared spectroscopy (FTIR) is also a common method to determine the total hydrogen content of an a‐Si:H layer. FTIR spectrometers are practical table‐top units but lack spatial resolution. In this study, an approach is discussed that greatly reduces the need for complex and expensive NRR‐analysis. A model based prediction of hydrogen depth profiles based on a single NRRA measurement and further FTIR measurements enables to investigate the trap limited hydrogen diffusion within a‐Si:H. The model is validated by hydrogen diffusion experiments during the post‐hydrogenation of hydrogen‐free sputtered a‐Si. The model based prediction of hydrogen depth profiles in a‐Si:H allows more precise design of experiments, prevents misinterpretations, avoids unnecessary NRRA measurements and thus saves time and expense. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
32.
Aptamers are single‐stranded oligonucleotides that selectively bind to their target molecules owing to their ability to form secondary structures and shapes. The 15‐mer (5′‐GGTTGGTGTGGTTGG‐3′) DNA thrombin‐binding aptamer (TBA) binds to thrombin following the formation of a quadruplex structure via the Hoogsten‐type G–G interactions. In the present study, Raman and SERS spectra of TBA and thiolated TBA (used to facilitate covalent bonding to metal nanoparticle) in different conditions are investigated. The spectra of the two analogs exhibit vibrations, such as the C8N7 H2 deformation band at ∼1480 cm−1 of the guanine tetrad, that are characteristic of the quadruplex structure in the presence of K+ ions or at low temperature. Interestingly, SERS spectra of the two analogs differ markedly from their respective normal Raman spectra, possibly due to changes in the conformation of the aptamer upon binding, as well as to the specific interaction of individual vibrational modes with the metal surface. In addition, the SERS spectra of the thiolated aptamer show significant changes with different concentrations, which may be due to different orientation of the molecule with respect to the metal surface. This study provides useful information for the development of label‐free aptamer‐based SERS sensors and assays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
33.
To evaluate the potential of magnetic resonance imaging (MRI) in detection and quantification of mitral regurgitation, 26 pts. with echocardiographically or angiographically documented mitral regurgitation were examined using a 0.5 Tesla superconducting magnet. In each patient a multislice-multiphase study in a sagittal-coronal double angulated projection (four-chamber view equivalent) was performed to assess left and right ventricular volumes, ejection fraction and regurgitant fraction. Additionally a blood flow sensitive cine-study (fast field echo: FFE) was done to visualize direction and area of regurgitant jet. MRI data were compared with quantitative and qualitative assessment of mitral regurgitation by angiography, 2D echocardiography, Doppler sonography and color flow mapping. Using the FFE mode MRI was able to detect the regurgitant jet as a typical signal loss within the left atrium in all patients. The ratio of regurgitant jet area/left atrium area as determined by MRI showed a correlation with a comparable ratio from color Doppler sonography of R = 0.87 (p < 0.001). There was also good agreement in semiquantitative grading of mitral regurgitation between MRI and angiography (R = 0.77, p < 0.001). The determination of left and right ventricular stroke volume allowed the calculation of the regurgitant fraction, which showed a correlation with invasively determined regurgitation fraction of R = 0.84 (p < 0.001). These data provide additional information that MRI may be useful as a noninvasive technique to detect and quantify mitral regurgitation.  相似文献   
34.
We present a complete systematics (excitation functions and system-size dependences) of global stopping and side flow for heavy ion reactions in the energy range between 0.09A and 1.93A GeV. For the heaviest system, Au+Au, we observe a plateau of maximal stopping extending from about 0.2A to 0.8A GeV with a fast drop on both sides. The degree of stopping, which is shown to remain significantly below the expectations of a full stopping scenario, is found to be highly correlated to the amount of side flow.  相似文献   
35.
The crossover in kinetic roughening of thin films from a particle-character-dominated regime to continuous growth behavior has been observed in this work. This has been accomplished by atomic force microscopy investigations of pulsed laser deposited amorphous organic films with thicknesses ranging from several nanometers to more than 4 microm. The early-stage random-deposition-like processes end once a closed layer is formed, which grows without saturation on the characteristic length scales. In addition, the influence of oblique film deposition has been examined and interpreted.  相似文献   
36.

Background  

Interruption of mature axons activates a cascade of events in neuronal cell bodies which leads to various outcomes from functional regeneration in the PNS to the failure of any significant regeneration in the CNS. One factor which seems to play an important role in the molecular programs after axotomy is the stearoyl Coenzyme A-desaturase-1 (SCD-1). This enzyme is needed for the conversion of stearate into oleate. Beside its role in membrane synthesis, oleate could act as a neurotrophic factor, involved in signal transduction pathways via activation of protein kinases C.  相似文献   
37.
Knowledge about the crystallization and grain growth characteristics of metal oxide thin films is essential for effective microstructural engineering by thermal post-annealing and the integration to Si-based miniaturized electroceramic devices. Finite size and interface effects may cause fundamentally different behavior compared to three dimensional macroscopic systems. This work presents a comprehensive investigation of the crystallization kinetics and microstructural evolution upon thermal post-annealing of amorphous 200 nm and 1.2 μm thin films of 8 mol% yttria-stabilized zirconia grown by pulsed laser deposition (PLD) using ex- and in-situ X-ray diffraction, Raman spectroscopy, and electron microscopy techniques. The layers exhibit a remarkably low crystallization temperature of 200-250 °C while exposure to energetic electrons induces the formation of randomly dispersed ~ 20 nm sized crystallites already at ambient temperature. The isothermal amorphous to crystalline phase transformation kinetics can be described quantitatively by the Johnson-Mehl-Avrami-Kolmogorov model. They reveal characteristics of a three dimensional growth under cation bulk diffusion control with heterogeneous nucleation that changes from continuous to instantaneous initial seeding at temperatures above 300 °C. Large (> 100 nm) equiaxed grains are formed rapidly without a stabilization of transient nanocrystals during the thermally induced phase transformation. A stagnation of normal grain growth resulting in a logarithmic normal size distribution is observed once the average grain dimensions approach the film thickness. The results on the crystallization and grain growth of the PLD-grown YSZ films are evaluated with regards to the fabrication of YSZ solid electrolyte membranes for Si-supported micro solid oxide fuel cells and gas sensors.  相似文献   
38.

Background  

The present work was performed to investigate the ability of two different embryonic stem (ES) cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs), progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far.  相似文献   
39.
The length of minimal and maximal blocks equally distant on log-log scale versus fluctuation function considerably influences bias and variance of DFA. Through a number of extensive Monte Carlo simulations and different fractional Brownian motion/fractional Gaussian noise generators, we found the pair of minimal and maximal blocks that minimizes the sum of mean-squared error of estimated Hurst exponents for the series of length . Sensitivity of DFA to sort-range correlations was examined using ARFIMA(p,d,q) generator. Due to the bias of the estimator for anti-persistent processes, we narrowed down the range of Hurst exponent to   相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号