首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2935篇
  免费   262篇
  国内免费   16篇
化学   2182篇
晶体学   11篇
力学   63篇
数学   426篇
物理学   531篇
  2023年   52篇
  2022年   61篇
  2021年   120篇
  2020年   166篇
  2019年   186篇
  2018年   84篇
  2017年   69篇
  2016年   198篇
  2015年   149篇
  2014年   160篇
  2013年   195篇
  2012年   275篇
  2011年   269篇
  2010年   157篇
  2009年   127篇
  2008年   197篇
  2007年   162篇
  2006年   158篇
  2005年   106篇
  2004年   61篇
  2003年   32篇
  2002年   32篇
  2001年   28篇
  2000年   18篇
  1999年   16篇
  1998年   12篇
  1997年   5篇
  1996年   10篇
  1995年   10篇
  1994年   8篇
  1993年   4篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1981年   7篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1974年   2篇
  1973年   5篇
  1937年   3篇
  1936年   1篇
  1932年   2篇
  1928年   1篇
排序方式: 共有3213条查询结果,搜索用时 15 毫秒
131.
Asymmetric platinum donor–acceptor complexes [(pimp)Pt(Q2−)] are presented in this work, in which pimp=[(2,4,6-trimethylphenylimino)methyl]pyridine and Q2−=catecholate-type donor ligands. The properties of the complexes are evaluated as a function of the donor ligands, and correlations are drawn among electrochemical, optical, and theoretical data. Special focus has been put on the spectroelectrochemical investigation of the complexes featuring sulfonyl-substituted phenylendiamide ligands, which show redox-induced linkage isomerism upon oxidation. Time-dependent density functional theory (TD-DFT) as well as electron flux density analysis have been employed to rationalize the optical spectra of the complexes and their reactivity. Compound 1 ([(pimp)Pt(Q2−)] with Q2−=3,5-di-tert-butylcatecholate) was shown to be an efficient photosensitizer for molecular oxygen and was subsequently employed in photochemical cross-dehydrogenative coupling (CDC) reactions. The results thus display new avenues for donor–acceptor systems, including their role as photocatalysts for organic transformations, and the possibility to introduce redox-induced linkage isomerism in these compounds through the use of sulfonamide substituents on the donor ligands.  相似文献   
132.
Textbook procedures require the use of individual aptamers enriched in SELEX libraries which are subsequently chemically synthesized after their biochemical characterization. Here we show that this reduction of the available sequence space of large libraries and thus the diversity of binding molecules reduces the labelling efficiency and fidelity of selected single aptamers towards different strains of the human pathogen Pseudomonas aeruginosa compared to a polyclonal aptamer library enriched by a whole-cell-SELEX involving fluorescent aptamers. The library outperformed single aptamers in reliable and specific targeting of different clinically relevant strains, allowed to inhibit virulence associated cellular functions and identification of bound cell surface targets by aptamer based affinity purification and mass spectrometry. The stunning ease of this FluCell-SELEX and the convincing performance of the P. aeruginosa specific library may pave the way towards generally new and efficient diagnostic techniques based on polyclonal aptamer libraries not only in clinical microbiology.  相似文献   
133.
A bis(diphenyl)-phosphine functionalized β-diketimine (PNac-H) was synthesized as a flexible ligand for transition metal complexes. The newly designed ligand features symmetrically placed phosphine moieties around a β-diketimine unit, forming a PNNP-type pocket. Due to the hard and soft donor atoms (N vs. P) the ligand can stabilize various coordination polyhedra. A complete series ranging from coordination numbers 2 to 6 was realized. Linear, trigonal planar, square planar, tetrahedral, square pyramidal, and octahedral coordination arrangements containing the PNac-ligand around the metal center were observed by using suitable metal sources. Hereby, PNac-H or its anion PNac acts as mono-, bi- and tetradendate ligand. Such a broad flexibility is unusual for a rigid tetradentate system. The structural motifs were realized by treatment of PNac-H with a series of late transition metal precursors, for example, silver, gold, nickel, copper, platinum, and rhodium. The new complexes have been fully characterized by single crystal X-ray diffraction, NMR, IR, UV/Vis spectroscopy, mass spectrometry as well as elemental analysis. Additionally, selected complexes were investigated regarding their photophysical properties. Thus, PNac-H proved to be an ideal ligand platform for the selective coordination and stabilization of various metal ions in diverse polyhedra and oxidation states.  相似文献   
134.
Trifluoromethylation of [AuF3(SIMes)] with the Ruppert–Prakash reagent TMSCF3 in the presence of CsF yields the product series [Au(CF3)xF3−x(SIMes)] (x=1–3). The degree of trifluoromethylation is solvent dependent and the ratio of the species can be controlled by varying the stoichiometry of the reaction, as evidenced from the 19F NMR spectra of the corresponding reaction mixtures. The molecular structures in the solid state of trans-[Au(CF3)F2(SIMes)] and [Au(CF3)3(SIMes)] are presented, together with a selective route for the synthesis of the latter complex. Correlation of the calculated SIMes affinity with the carbene carbon chemical shift in the 13C NMR spectrum reveals that trans-[Au(CF3)F2(SIMes)] and [Au(CF3)3(SIMes)] nicely follow the trend in Lewis acidities of related organo gold(III) complexes. Furthermore, a new correlation between the Au−Ccarbene bond length of the molecular structure in the solid state and the chemical shift of the carbene carbon in the 13C NMR spectrum is presented.  相似文献   
135.
Screening for an interesting biocatalyst and its subsequent kinetic characterization depends on a reliable activity assay. In this work, a fluorometric assay based on the halogenation of 4-methyl-7-diethylamino-coumarin was established to monitor haloperoxidase-activity. Since haloperoxidases utilize hydrogen peroxide and halide ions to halogenate a broad range of substrates by releasing hypohalous acids, a direct quantification of haloperoxidase-activity remains difficult. With the system presented here, 3-bromo-4-methyl-7-diethylaminocoumarin is preferentially formed and monitored by fluorescence measurements. As starting material and product share similar spectroscopical properties, a two-dimensional calibration ap-proach was utilized to allow for quantification of each compound within a single measurement. To validate the system, the two-dimensional Michaelis-Menten kinetics of a vanadium-dependent chloroperoxidase from Curvularia inaequalis were recorded, yielding the first overall kinetic parameters for this enzyme. With limits of detection and quantification in the low μm range, this assay may provide a reliable alternative system for the quantification of haloperoxidase-activity.  相似文献   
136.
Owing to its outstanding elastic properties, the nitride spinel γ‐Si3N4 is of considered interest for materials scientists and chemists. DFT calculations suggest that Si3N4‐analog beryllium phosphorus nitride BeP2N4 adopts the spinel structure at elevated pressures as well and shows outstanding elastic properties. Herein, we investigate phenakite‐type BeP2N4 by single‐crystal synchrotron X‐ray diffraction and report the phase transition into the spinel‐type phase at 47 GPa and 1800 K in a laser‐heated diamond anvil cell. The structure of spinel‐type BeP2N4 was refined from pressure‐dependent in situ synchrotron powder X‐ray diffraction measurements down to ambient pressure, which proves spinel‐type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state, which indicates that spinel‐type BeP2N4 is an ultraincompressible material.  相似文献   
137.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   
138.
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light‐induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non‐adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.  相似文献   
139.
The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties.  相似文献   
140.
Single‐walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near‐infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red‐shifted emission peak. Here, we report on quantum defects, introduced using light‐driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine‐containing proteins such as a GFP‐binding nanobody. In addition, an Fmoc‐protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号