首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3019篇
  免费   264篇
  国内免费   14篇
化学   2273篇
晶体学   13篇
力学   61篇
数学   415篇
物理学   535篇
  2023年   53篇
  2022年   74篇
  2021年   119篇
  2020年   170篇
  2019年   190篇
  2018年   84篇
  2017年   71篇
  2016年   201篇
  2015年   152篇
  2014年   161篇
  2013年   202篇
  2012年   281篇
  2011年   280篇
  2010年   157篇
  2009年   130篇
  2008年   212篇
  2007年   165篇
  2006年   153篇
  2005年   107篇
  2004年   62篇
  2003年   37篇
  2002年   32篇
  2001年   29篇
  2000年   18篇
  1999年   15篇
  1998年   11篇
  1997年   5篇
  1996年   14篇
  1995年   13篇
  1994年   10篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1932年   2篇
  1894年   1篇
排序方式: 共有3297条查询结果,搜索用时 46 毫秒
31.
Reaction of the antitumor complex trans-[Ru(III)Cl4(Hind)2]- (Hind = indazole) with an excess of dimethyl sulfoxide (dmso) in acetone afforded the complex trans,trans,trans-[Ru(II)Cl2(dmso)2(Hind)2] (1). Two other isomeric compounds trans,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (2) and cis,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (3) have been obtained on refluxing cis-[Ru(II)Cl(2)(dmso)(4)] with 2 equiv. of indazole in ethanol and methanol, respectively. Isomers 1 and 2 react with acetonitrile yielding the complexes trans-[Ru(II)Cl2(dmso)(Hind){HN=C(Me)ind}].CH3CN (4.CH3CN) and trans,cis-[Ru(II)Cl2(dmso)2{HN=C(Me)ind}].H2O (5.H2O), respectively, containing a cyclic amidine ligand resulting from insertion of the acetonitrile C triple bond N group in the N1-H bond of the N2-coordinated indazole ligand in the nomenclature used for 1H-indazole. These are the first examples of the metal-assisted iminoacylation of indazole. The products isolated have been characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, electrospray mass-spectrometry, thermogravimetry, differential scanning calorimetry, 1H NMR spectroscopy, and solid-state 13C CP MAS NMR spectroscopy. The isomeric structures of 1-3 and the presence of a chelating amidine ligand in 4 and 5 have been confirmed by X-ray crystallography. The electrochemical behavior of 1-5 and the formation of 5 have been studied by cyclic voltammetry.  相似文献   
32.
The ligands 4-7-H(2) were used in coordination studies with titanium(IV) and gallium(III) ions to obtain dimeric complexes Li(4)[(4-7)(6)Ti(2)] and Li(6)[(4/5a)(6)Ga(2)]. The X-ray crystal structures of Li(4)[(4)(6)Ti(2)], Li(4)[(5b)(6)Ti(2)], and Li(4)[(7a)(6)Ti(2)] could be obtained. While these complexes are triply lithium-bridged dimers in the solid state, a monomer/dimer equilibrium is observed in solution by NMR spectroscopy and ESI FT-ICR MS. The stability of the dimer is enhanced by high negative charges (Ti(IV) versus Ga(III)) of the monomers, when the carbonyl units are good donors (aldehydes versus ketones and esters), when the solvent does not efficiently solvate the bridging lithium ions (DMSO versus acetone), and when sterical hindrance is minimized (methyl versus primary and secondary carbon substituents). The dimer is thermodynamically favored by enthalpy as well as entropy. ESI FT-ICR mass spectrometry provides detailed insight into the mechanisms with which monomeric triscatecholate complexes as well as single catechol ligands exchange in the dimers. Tandem mass spectrometric experiments in the gas phase show the dimers to decompose either in a symmetric (Ti) or in an unsymmetric (Ga) fashion when collisionally activated. The differences between the Ti and Ga complexes can be attributed to different electronic properties and a charge-controlled reactivity of the ions in the gas phase. The complexes represent an excellent example for hierarchical self-assembly, in which two different noncovalent interactions of well balanced strengths bring together eleven individual components into one well-defined aggregate.  相似文献   
33.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   
34.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   
35.
The formation of excitons in OLEDs is spin dependent and can be controlled by electron‐paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (<1 mT). A pronounced feature emerges at zero field in addition to the conventional spin‐ Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional π‐conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between the zero‐field feature and local hyperfine fields. The zero‐field peak results from a quasistatic magnetic‐field effect of the RF radiation for periods comparable to the carrier‐pair lifetime. Zeeman resonances are resolved down to 3.2 MHz, approximately twice the Larmor frequency of an electron in Earth's field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero‐field peak, we suggest that this result may constitute a fundamental low‐field limit of magnetic resonance in carrier‐pair‐based systems. OLEDs offer an alternative solid‐state platform to investigate the radical‐pair mechanism of magnetic‐field effects in photochemical reactions, allowing models of biological magnetoreception to be tested by measuring spin decoherence directly in the time domain by pulsed experiments.  相似文献   
36.
Bauer S  Müller H  Bein T  Stock N 《Inorganic chemistry》2005,44(25):9464-9470
Following the strategy of using polyfunctional phosphonic acids for the synthesis of open-framework metal phosphonates, the phosphonocarboxylic acid (H2O3PCH2)2NCH2C6H4COOH was used in the hydrothermal synthesis of new Ba phosphonates. Its decomposition led to the first open-framework barium phosphonate [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O. The synthesis was also successfully performed using iminobis(methylphosphonic acid), (H2O3PCH2)2NH, as a starting material, and the synthesis was optimized to obtain as a pure material. The reaction setup as well as the pH are the dominant parameters, and only a diffusion-controlled reaction led to the desired compound. The crystal structure was solved from single-crystal data: monoclinic; C2/c; a=2328.7(2), b=1359.95(7), and c=718.62(6) pm; beta=98.732(10) degrees ; V=2249.5(3)x10(6) pm3; Z=4; R1=0.036; and wR2=0.072 (all data). The structure of [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O is built up from BaO8 and BaO10 polyhedra forming BaO chains and layers, respectively. These are connected to a three-dimensional metal-oxygen-metal framework with the iminobis(methylphosphonic acid) formally coating the inner walls of the pores. The one-dimensional pores (3.6x4 A) are filled with H2O molecules that can be thermally removed. Thermogravimetric investigations and temperature-dependent X-ray powder diffraction demonstrate the stability of the crystal structure up to 240 degrees C. The uptake of N,N-dimethylformamide and H2O by dehydrated samples is demonstrated. Furthermore, IR, Raman, and 31P magic-angle-spinning NMR data are also presented.  相似文献   
37.
38.
The structure of the title compound, {[Mg(C4H7O2)2(H2O)3]·H2O}n, features one‐dimensional ...(μ2‐ib)Mg(μ2‐ib)Mg... zigzag chains (ib is isobutyrate) parallel to the c axis. The octahedral Mg environment is completed by three fac‐oriented terminal water ligands, as well as one further monodentate end‐on coordinated ib ligand. In the crystal structure, the hydrophobic ib groups are all oriented within one half of the coordination perimeter of each chain, whereas the water ligands, together with hydrogen‐bonded noncoordinated solvent water molecules, define the other half. Along the a axis, neighbouring strands are oriented so that both the hydrophilic and hydrophobic sides are adjacent to each other. This results in an extensive hydrogen‐bonding network within the hydrophilic areas, also involving an additional solvent water molecule per formula unit. There are van der Waals contacts between the aliphatic isopropyl groups of the hydrophobic areas.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号