首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   3篇
化学   79篇
力学   2篇
数学   8篇
物理学   86篇
  2022年   2篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   14篇
  2006年   8篇
  2005年   14篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1971年   2篇
  1969年   2篇
  1944年   1篇
  1943年   2篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
71.
Schaaf  Peter  Landry  Felix  Han  Meng  Carpene  Ettore  Lieb  Klaus-Peter 《Hyperfine Interactions》2002,139(1-4):307-314
Nitriding is a common method for improving the hardness, mechanical properties, wear and corrosion resistance of metals. Laser nitriding of metals is an efficient process, where the irradiation of surfaces in air or nitrogen atmospheres with short laser pulses leads to a fast take-up of nitrogen into the irradiated surfaces. This process has been extensively investigated for pure iron, but usually, no tools or functional parts are made of pure iron. Mainly steel or cast iron is used as a base material. Therefore, when looking for technical applicability, also the influence of alloying elements on the laser nitriding process is of great interest. Besides the pure iron various carbon steels and an austenitic stainless steel were studied in laser nitriding experiments in order to investigate the influence of the material itself. Here, the process is investigated via Conversion Electron and X-ray Mössbauer Spectroscopy (CEMS and CXMS), Resonant Nuclear Reaction Analysis (RNRA), and X-Ray Diffraction (XRD). It appears that carbon steels are even better suited for the laser nitriding process than pure iron, and the laser nitriding also works efficiently for the stainless steel which is normally difficult to be nitrided.  相似文献   
72.
Plasma polymerization has gained increasing attention in surface functionalization. We use here chemical force titration to characterize PDMS (polydimethylsiloxane) substrates modified by maleic anhydride-pulsed plasma polymerization. The coating is hydrolyzed to promote the formation of dicarboxylic acid groups. To enhance the variation of the adhesion forces as a function of pH, we use AFM tips modified in the same way as the substrates. The pH-dependent adhesion measurements are performed at different KCl concentrations. The dicarboxylic nature of the maleic acid groups clearly emerges from the force titration curves. The surface pK(a) values (pK(a1) = 3.5 +/- 0.5 and pK(a2) = 9.5 +/- 0.5) of the dicarboxylic acids are evaluated from low electrolyte concentration solutions. The values are shifted toward higher pK(a) values when compared to maleic acid in solution. The first pK(a) appears in the titration force curve for low salt concentration as a peak. This peak changes to a sigmoidal shape at higher salt concentrations. The appearance of a peak is attributed to the formation of strong hydrogen bonds between the tip and the substrate as reported in the literature. The effect of the ionic strength on the force curves is explained by the condensation of counterions on the carboxylate groups. At high pH, the adhesion force almost vanishes. On the approach, at high pH, one first observes repulsion between the tip and the substrate, which varies exponentially with the tip/substrate distance. The decay length of this repulsion force is in good agreement with theoretical predictions of the Debye length, attesting to the electrostatic nature of the interactions. We also find that the replacement of monovalent cation K(+) by the divalent cation Ca(2+) leads to significant changes in the force titration curve at high pH where the dicarboxylic groups are fully ionized. We observe that the adhesion force no longer vanishes at high pH but even slightly increases with pH, an effect that is explained by Ca(2+) ions bridging between two carboxylate groups.  相似文献   
73.
Two-dimensional (2D) materials catalysts provide an atomic-scale view on a fascinating arena for understanding the mechanism of electrocatalytic carbon dioxide reduction (CO2 ECR). Here, we successfully exfoliated both layered and nonlayered ultra-thin metal phosphorous trichalcogenides (MPCh3) nanosheets via wet grinding exfoliation (WGE), and systematically investigated the mechanism of MPCh3 as catalysts for CO2 ECR. Unlike the layered CoPS3 and NiPS3 nanosheets, the active Sn atoms tend to be exposed on the surfaces of nonlayered SnPS3 nanosheets. Correspondingly, the nonlayered SnPS3 nanosheets exhibit clearly improved catalytic activity, showing formic acid selectivity up to 31.6 % with −7.51 mA cm−2 at −0.65 V vs. RHE. The enhanced catalytic performance can be attributed to the formation of HCOO* via the first proton-electron pair addition on the SnPS3 surface. These results provide a new avenue to understand the novel CO2 ECR mechanism of Sn-based and MPCh3-based catalysts.  相似文献   
74.
Tuning the dihedral angle (DA) of axially chiral compounds can impact biological activity, catalyst efficiency, molecular motor performance, or chiroptical properties. Herein, we report gradual, controlled, and reversible changes in molecular conformation of a covalently linked binaphthyl moiety within a 3D polymeric network by application of a macroscopic stretching force. We managed direct observation of DA changes by measuring the circular dichroism signal of an optically pure BINOL-crosslinked elastomer network. Stretching the elastomer resulted in a widening of the DA between naphthyl rings when the BINOL was doubly grafted to the elastomer network; no effect was observed when a single naphthyl ring of the BINOL was grafted to the elastomer network. We have determined that ca. 170 % extension of the elastomers led to the transfer of a mechanical force to the BINOL moiety of 2.5 kcal mol−1 Å−1 (ca. 175 pN) in magnitude and results in the opening of the DA of BINOL up to 130°.  相似文献   
75.
Abstract

In isotope geochemistry, natural differences in isotope abundance ratios of heavy elements (e.g. Sr, Nd, Pb) allow the use of specific isotopic signatures as tracers for these and genetically related elements. Examples of such applications in the field of anthropogeochemistry will be presented for lead and strontium.  相似文献   
76.
Inspired by biology, one current goal in supramolecular chemistry is to control the emergence of new functionalities arising from the self‐assembly of molecules. In particular, some peptides can self‐assemble and generate exceptionally catalytically active fibrous networks able to underpin hydrogels. Unfortunately, the mechanical fragility of these materials is incompatible with process developments, relaying this exciting field to academic curiosity. Here, we show that this drawback can be circumvented by enzyme‐assisted self‐assembly of peptides initiated at the walls of a supporting porous material. We applied this strategy to grow an esterase‐like catalytically active supramolecular hydrogel (CASH) in an open‐cell polymer foam, filling the whole interior space. Our supported CASH material is highly efficient towards inactivated esters and enables the kinetic resolution of racemates. This hybrid material is robust enough to be used in continuous flow reactors, and is reusable and stable over months.  相似文献   
77.
The setup for Simultaneous Triple Radiation Mössbauer Spectroscopy (STRMS) is described. The arrangement allows an independent and simultaneous recording of conversion electron Mössbauer spectra (CEMS) and of conversion X-ray Mössbauer spectra (CXMS), both in backscattering geometry, and-in addition-of γ-ray absorption spectra in transmission (TMS). Due to the different escape or penetration ranges of the three radiations involved, the spectra give information on phases, depth and orientation. From a practical point of view the counter for γ-rays, X-rays and electrons must be separated and shielded to minimize the mutual perturbation.  相似文献   
78.
79.
Applied Physics A - Silicide formation and ion beam mixing of Fe/Si bilayers due to Ar-, Xe- and Au-ion irradiations at room and liquid-nitrogen temperatures were investigated. For the study of...  相似文献   
80.
Steel plates (St 14-05) of 1.5 mm thickness and coated with 1.5 m of ironzinc-phosphatehydrate (ASTM 29-1429) were irradiated with an XeCl-excimer laser (Siemens XP 2020) at energy densities of 20–80 mJ/mm2 and with 2–32 pulses per spot. Depth-sensitive Mössbauer spectroscopy was carried out by means of conversion electron (CEMS) and conversion X-ray (CXMS) Mössbauer spectroscopy in order to determine the phases produced by the excimer laser treatment. Although the phosphate layer is mainly ablated during the laser treatment, there is a significant formation of Fe2P. The phosphorous phase and the wüstite, with changing stoichiometries, were found in the very surface (CEMS). In deeper layers and in correlation with the energy density and the number of pulses, austenite was found in surprisingly high amounts (CEMS and CXMS). The austenite was found to be nitrogen austenite. The high Fe-N austenite content as well as the presence of some ferromagnetic Fe-N phase (-Fe2+xN) must be ascribed to an unexpectedly high nitriding effect during the laser treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号