首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   3篇
化学   79篇
力学   2篇
数学   8篇
物理学   86篇
  2022年   2篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   14篇
  2006年   8篇
  2005年   14篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1971年   2篇
  1969年   2篇
  1944年   1篇
  1943年   2篇
排序方式: 共有175条查询结果,搜索用时 312 毫秒
101.
There exist two types of polyelectrolyte multilayers: those whose thickness increases linearly with the number of deposition steps, which are nicely structured, and those whose thickness increases exponentially, which resembles hydrogels. This simple picture has recently slightly evolved with the finding that some exponentially growing films enter into a linear growth phase after a certain number of deposition steps. In this study, we investigate the buildup process of hyaluronic acid/poly(L-lysine) (HA/PLL) multilayers that constitute one of the best known exponentially growing systems. The films are built by using two deposition methods: the well-known dipping method and the more recent spraying method where the polyelectrolyte solutions are sprayed alternately onto a vertical substrate. The goal of this study is twofold. First, we investigate the influence of the main parameters (i.e., spraying rate and spraying time) of the spraying method on the film growth process. We find that, as for the dipping method, the film thickness first evolves exponentially with the number of deposition steps, and after a given number of deposition steps, it follows a linear evolution. We find that similar behavior is observed with the dipping method. Second, because the spraying method allows the very fine variation of the different parameters of the buildup, we use this method to investigate the exponential-to-linear transition. We find that this transition always takes place after about 12 deposition steps whatever the values of the parameters controlling the deposition process. We discuss our results in light of a model proposed by Hübsch et al. (Hübsch, E.; Ball, V.; Senger, B.; Decher, G.; Voegel, J. C.; Schaaf, P. Langmuir 2004, 20, 1980-1985) and later by Salom?ki et al. (Salom?ki, M.; Vinokurov, I. A.; Kankare, J. Langmuir 2005, 21, 11232-11240) in which it is assumed that the exponential-to-linear transition is due to a film restructuring that progressively forbids the diffusion of one of the polyelectrolytes constituting the film over part of the film. This "forbidden" zone then grows with the number of deposition steps so that the outer zone of the film that is still concerned with diffusion keeps a constant thickness and moves upward as the total film thickness increases.  相似文献   
102.
The magnetic texture of (Fe1?x Cox)76Mo8Cu1B15 (x = 0, 0.5) nanocrystalline alloys is studied for different amounts of nanocrystalline grains. The originally amorphous alloys were annealed in external longitudinal and transverse magnetic fields of 0.025 T and 0.8T, respectively. Mössbauer measurements were carried out at room and liquid nitrogen temperatures in order to gain information on the hyperfine interactions and the orientation of the magnetization. The obtained results are compared with those received from zero-field annealed samples. Magneto-optical Kerr effect (MOKE) was applied for the investigation of possible changes at the surface of the x = 0 ribbon as a function of annealing temperature and applied magnetic field. A combination of uniaxial anisotropy, which originates from the shape anisotropy, and four-fold anisotropy, which is a contribution from crystallites of nanometre size embedded in the residual amorphous matrix, is unveiled.  相似文献   
103.
Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron M?ssbauer spectroscopy, magneto–optical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were used for a detailed examination of the carburization effects in the sputtered stainless-steel films. The formation of an amorphous and soft ferromagnetic phase in a wide range of the processing parameters was found. Further, the influence of the substrate temperature and of post vacuum-annealing were examined to achieve a comprehensive understanding of the carburization process and phase formation. P. Schaaf’s former affiliation: II. Physikalisches Institut, Universit?t G?ttingen, Friedrich-Hund-Platz 1, 37077 G?ttingen, Germany.  相似文献   
104.
Because backscattering geometry in Mössbauer spectroscopy is particularly useful for non-destructive testing interesting technical applications arise. The reported toroidal proportional detector for backscattered Mössbauer ψ-rays and X-rays enables non-destructive testing of technical surfaces since no sample preparation is required. Improvements in assembling, shielding, wire-fixing and gas-filling-in comparison to the first version of the detector-are reported. The performance of the improved detector is demonstrated by measurements of steel surfaces which are modified by plasma nitriding and laser irradiation.  相似文献   
105.
Laser alloying of surfaces has attracted a great deal of attention for technical applications. By laser alloying of materials it is possible to improve hardness as well as wear and corrosion resistance of the surface without affecting the bulk material. The surface of a mild steel (C45) substrate was laser-alloyed with chromium-boride CrB2. The chromium-boride was added to the substrate surface by powder injection during laser surface melting with a high power continuous-wave CO2-laser. The resulting surface layers were studied by surface Mössbauer measurements. The backscattering geometry of Conversion X-ray Mössbauer Spectroscopy (CXMS) was used to study the phase formation in the laser alloyed surface. The results for the treated surfaces are discussed for different samples.  相似文献   
106.
Schaaf  P.  Milosavljevic  M.  Dhar  S.  Bibic  N.  Lieb  K.-P.  Wölz  M.  Principi  G. 《Hyperfine Interactions》2002,139(1-4):615-621
At present, there is an increasing interest in the iron di-silicide phase -FeSi2, which is supposed to be a direct band gap semiconductor and one of the most promising materials for silicon-based optoelectronics, e.g., light-emitting devices, solar cells, and photo detectors. But this phase is very difficult to be produced. Here, the successful direct synthesis of this phase by ion beam mixing of Fe/Si bilayers at temperatures in the range of 400 to 600°C is reported. The aim of the experiments was to achieve a complete reaction of the deposited Fe layer with the Si substrate that results in the formation of a pure, single-phased -FeSi2 surface layer. The obtained silicide layers, their structure and composition are investigated by conversion electron Mössbauer spectroscopy (CEMS), Rutherford backscattering spectrometry (RBS), and X-ray diffraction (XRD). The fraction of the -FeSi2 formed is determined by CEMS as function of ion species, energy, fluence and temperature. Complete growth and formation of a single-phased -FeSi2 layer was achieved by 205 keV Xe ion irradiation at a fluence of 2×1016 ions/cm2 at 600°C.  相似文献   
107.
Carpene  Ettore  Landry  Felix  Han  Meng  Lieb  Klaus Peter  Schaaf  Peter 《Hyperfine Interactions》2002,139(1-4):355-361
Laser nitriding has revealed to be a very promising and effective treatment to improve the technical properties, like surface hardness and corrosion-wear resistance, of iron and steels. The high nitrogen concentration, the fastness and precision of the treatment and the easy experimental setup make this technique very suitable for applications on industrial scale. Samples of pure iron and austenitic stainless steel have been irradiated with ns laser pulses in the UV radiation range and analyzed by means of Conversion Electron Mössbauer Spectroscopy (CEMS), Resonant Nuclear Reaction Analysis (RNRA), Grazing Incidence X-Ray Diffraction (GXRD) and Microhardness. Mössbauer Spectroscopy, in particular, is capable of detecting the phase composition of the nitrided layer and therefore represents an essential tool for these kind of analysis. The thermal stability of the treated samples have been investigated by subsequent annealings at increasing temperatures in vacuum and in air. For iron samples the annealing treatment at 250°C shows a rather drastic phase transformation from phase (fcc) into (Fe4N) while a strong depletion of N has been observed for 400°C or higher, regardless of the ambient pressure (atmospheric or vacuum). On the other hand, the stainless steel shows a very good thermal stability up to 500°C, but higher temperatures induce a gradual decrease in the nitrogen concentration which seems to be a common feature for both pure iron and stainless steel. Furthermore, annealing in air leads to the formation of a thin oxide layer on the surface of the iron sample which is easily characterized by Mössbauer spectroscopy.  相似文献   
108.
Zero-field splitting parameters of phenanthrene and 26 azaanalogues in their lowest triplet state have been evaluated from EPR spectra; triplet lifetimes axe also given The parameters D of phenanthrene and the monoazaanalogues are in good accord with calculated values. The results are discussed in terms of differences in electron distribution and configuration.  相似文献   
109.
The Mössbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe?Zr and Fe?Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spincorrelation well above Tc.  相似文献   
110.
Crystalline and ion-beam-amorphized silicon samples were irradiated with a pulsed nanosecond excimer laser in a pure hydrogen atmosphere. The hydrogen concentration was determined via the 1H(15N,)12C nuclear reaction. In the case of crystalline silicon, hydrogen incorporation into the sample surface was found to be well above the hydrogen solubility limit at thermodynamic equilibrium. The hydrogen depth profiles perfectly matched the damage profiles measured via Rutherford backscattering channeling spectroscopy. For the pre-amorphized silicon samples, the laser treatment resulted in epitaxial recrystallization of the amorphous top layer, but the hydrogen uptake was found to be negligible in that case. The experimental data were compared with the results of thermodynamic simulations of the laser–gas–material interaction. PACS 52.38.Mf; 61.72.Tt; 64.70.Dv  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号