首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3620篇
  免费   123篇
  国内免费   9篇
化学   2625篇
晶体学   59篇
力学   38篇
数学   193篇
物理学   837篇
  2023年   20篇
  2022年   30篇
  2021年   46篇
  2020年   76篇
  2019年   58篇
  2018年   51篇
  2017年   33篇
  2016年   90篇
  2015年   69篇
  2014年   103篇
  2013年   163篇
  2012年   234篇
  2011年   277篇
  2010年   145篇
  2009年   133篇
  2008年   255篇
  2007年   242篇
  2006年   243篇
  2005年   224篇
  2004年   202篇
  2003年   160篇
  2002年   170篇
  2001年   63篇
  2000年   47篇
  1999年   32篇
  1998年   39篇
  1997年   29篇
  1996年   37篇
  1995年   32篇
  1994年   23篇
  1993年   20篇
  1992年   24篇
  1991年   19篇
  1990年   27篇
  1989年   19篇
  1988年   22篇
  1987年   17篇
  1986年   19篇
  1985年   21篇
  1984年   22篇
  1983年   26篇
  1982年   23篇
  1981年   22篇
  1980年   30篇
  1979年   29篇
  1978年   16篇
  1977年   14篇
  1976年   8篇
  1975年   17篇
  1973年   7篇
排序方式: 共有3752条查询结果,搜索用时 78 毫秒
101.
Generation of singlet and triplet 2-silylcyclopentane-1,3-diyls and their reactivity have been investigated in the thermal and photochemical denitrogenation of 2,3-diaza-7-silylbicyclo[2.2.1]hept-2-ene. 5-Silylcyclopentene (silyl migration product) is quantitatively obtained, while 5-silylbicyclo[2.1.0]pentane (intramolecular ring-closure product) is not detected in the denitrogenation reactions. Deuterium labeling studies clarify that 5-silylcyclopentene is formed by a suprafacial [1,2] silyl migration in singlet 2-silylcyclopentane-1,3-diyl. UDFT calculations closely reproduce the observed reactivity of the singlet diradical: The enthalpic barriers of the intramolecular ring-closure are calculated to be DeltaH++exo468 = 5.8 kcal/mol and DeltaH++endo468 = 6.7 kcal/mol, which are much higher than the energy barrier for the [1,2] silyl migration, DeltaH++468 = 2.7 kcal/mol. The notable effect of the silyl group on raising the energy barrier of the intramolecular cyclization is rationalized by an electronic configuration of the lowest singlet state of 2-silylcyclopentane-1,3-diyls.  相似文献   
102.
We have prepared several new iron(III) complexes with ligands which contain a phenol group; these are tetradentate [(X-phpy)H, X and H(phpy) represent the substituents on the phenol ring and N,N-bis(2-pyridylmethyl)-N-(2-hydroxybenzyl)amine, respectively] and pentadentate ligands [(R-enph-X)H; R=ethyl(Et) or methyl(Me) derivative and H(Me-enph) denotes N,N-bis(2-pyridylmethyl)-N″-methyl-N″-(2″-hydroxyl-benzylamine)ethylenediamine] and have determined the crystal structures of Fe(phpy)Cl2, Fe(5-NO2-phpy)Cl2, and Fe(Me-enph)ClPF6, which are of a mononuclear six-coordinate iron(III) complex with coordination of one or two chloride ion(s). These compounds are highly colored (dark violet) due to the coordination of phenol group to an iron(III) atom. When hydrogen peroxide was added to the solution of the iron(III) complex, a color change occurs with bleaching of the violet color, indicating that oxidative degradation of the phenol moiety occurred in the ligand system. The bleaching of the violet color was also observed by the addition of t-butylhydroperoxide. The rate of the disappearance of the violet color is highly dependent on the substituent on the phenol ring; introduction of an electron-withdrawing group in the phenol ring decreases the rate of bleaching, suggesting that disappearance of the violet band should be due to a chemical reaction between the phenol group and a peroxide adduct of the iron(III) species with an η1-coordination mode and that in this reaction the peroxide adduct acts as an electrophile towards phenol ring. The intramolecular interaction between the phenol moiety and an iron(III)-peroxide adduct may induce activation of the peroxide ion, and this was supported by several facts that the solution containing an iron(III) complex and hydrogen peroxide exhibits high activities for degradation of nucleosides and albumin.  相似文献   
103.
The vapor absorbency of the series of alcohols methanol, ethanol, 1‐propanol, 1‐butanol, and 1‐pentanol was characterized on the single‐crystal adsorbents [MII2(bza)4(pyz)]n (bza=benzoate, pyz=pyrazine, M=Rh ( 1 ), Cu ( 2 )). The crystal structures of all the alcohol inclusions were determined by single‐crystal X‐ray crystallography at 90 K. The crystal‐phase transition induced by guest adsorption occurred in the inclusion crystals except for 1‐propanol. A hydrogen‐bonded dimer of adsorbed alcohol was found in the methanol‐ and ethanol‐inclusion crystals, which is similar to a previous observation in 2 ?2EtOH (S. Takamizawa, T. Saito, T. Akatsuka, E. Nakata, Inorg. Chem. 2005 , 44, 1421–1424). In contrast, an isolated monomer was present in the channel for 1‐propanol, 1‐butanol, and 1‐pentanol inclusions. All adsorbed alcohols were stabilized by hydrophilic and/or hydrophobic interactions between host and guest. From the combined results of microscopic determination (crystal structure) and macroscopic observation (gas‐adsorption property), the observed transition induced by gas adsorption is explained by stepwise inclusion into the individual cavities, which is called the “step‐loading effect.” Alcohol/water separation was attempted by a pervaporation technique with microcrystals of 2 dispersed in a poly(dimethylsiloxane) membrane. In the alcohol/water separation, the membrane showed effective separation ability and gave separation factors (alcohol/water) of 5.6 and 4.7 for methanol and ethanol at room temperature, respectively.  相似文献   
104.
The γ-ray-induced addition reaction of carbon tetrachloride onto syndiotactic 1,2-polybutadiene film and liquid 1,2-polybutadiene was carried out at room temperature. In the film gelation was pronounced and the rate of addition increased as the crystallinity of the polymer decreased. In the liquid gelation, which makes the polymer insoluble in carbon tetrachloride, did not take place, although a definite crosslinking reaction was noticed. In this case the appearance of the product changed from a viscous liquid to a white powder as the reaction proceeded. Its structure was compared with that of chlorinated 1,2-polybutadiene. The addition of carbon tetrachloride to the vinyl group in liquid 1,2-polybutadiene caused an anti-Markownikoff-type reaction and was accompanied by an unexpectedly large vinyl depletion in the polymer. The total decrease in the vinyl group was found to be much larger than that brought about by the addition of carbon tetrachloride. This discrepancy was attributed to a cyclization and crosslinking reaction ascribed to the vinyl group bound by the main chain. Cyclization and crosslinking were less noticeable in the chlorination than in the carbon tetrachloride.  相似文献   
105.
The monolayer properties of poly(n-stearyl methacrylate), poly(n-lauryl methacrylate), and their mixtures at various ratios of the two polymers have been studied from the measurements of their surface pressure–area isotherms at air–water interface. The monolayer properties of their mixtures have been compared with those of their corresponding copolymers. The results show that the isotherms of the mixed monolayers have two break points at higher pressures than that of poly(n-lauryl methacrylate). This suggests that the mixtures may form more stable films that consist of separate phases of the two homopolymers, although each phase may contain a small amount of the other. The isotherms of the copolymer monolayers indicate a phase transition from liquid condensed to solid film between 50 segment mole % and 70% poly(n-stearyl methacrylate). The monclayer of these copolymers has properties that differ from those of the corresponding mixtures of two pure homopolymers and is more compatible than the mixtures of pure homopolymers.  相似文献   
106.
107.
Under the assumption that the so-called space-time fluctuationy(x) in a classical sense, attached to each point of the gravitational field at some microscopic stage, is summarized as the metrical fluctuation in the formg λκ (x)=gλκ (x)·exp2σ(y(x)), some new physical aspects induced by the conformal scalarσ(x) (≡σ(y(x))) are found: By introducing the torsionT κ λμ (x) from a general standpoint, the resulting micro-gravitational field is made to have a conformally non-Riemannian structure, where a special form ofT κ λμ (i.e.,T κ λμ κ λ σμ κ μ σλμ=?σ/?x μ)) shows some peculiar features. An averaging process with respect toy is taken into account, by which the spatial structure of the corresponding macro-field is shown, in general, to have a somewhat “non”-Riemannian structure due to the contributions of the torsionT κ λμ .  相似文献   
108.
m-Diethynylbenzene macrocycles (DBMs), buta-1,3-diyne-bridged [4(n)]metacyclophanes, have been synthesized and their self-association behaviors in solution were investigated. Cyclic tetramers, hexamers, and octamers of DBMs having exo-annular octyl, hexadecyl, and 3,6,9-trioxadecyl ester groups were prepared by intermolecular oxidative coupling of dimer units or intramolecular cyclization of the corresponding open-chain oligomers. The aggregation properties were investigated by two methods, the (1)H NMR spectra and the vapor pressure osmometry (VPO). Although some discrepancies were observed between the association constants obtained from the two methods, the qualitative view was consistent with each other. The analysis of self-aggregation by VPO revealed unique aggregation behavior of DBMs in acetone and toluene, which was not elucidated by the NMR method. Namely, the association constants for infinite association are several times larger than the dimerization constant, suggesting that the aggregation is enhanced by the formation of dimers (a nucleation mechanism). In polar solvents, DBMs aggregate more strongly than in chloroform due to the solvophobic interactions between the macrocyclic framework and the solvents. Moreover, DBMs self-associate in aromatic solvents such as toluene and o-xylene more readily than in chloroform. In particular, the hexameric DBM having a large macrocyclic cavity exhibits extremely large association constants in aromatic solvents. By comparing the aggregation properties of DBMs with the corresponding acyclic oligomers, the effect of the macrocyclic structure on the aggregation propensity was clarified. Finally, it turned out that DBMs tend to aggregate more readily than the corresponding phenylacetylene macrocycles, acetylene-bridged [2(n)]metacyclophanes, owing to the withdrawal of the electron density from the aromatic rings by the butadiyne linkages which facilitates pi-pi stacking interactions.  相似文献   
109.
The CD exciton chirality method was applied to various phenylacetylene alcohols to determine their absolute configurations; the long axis polarized –* transition (max=252nm) of the 4-methoxyphenylacetylene chromophore couples with the transition (max=257nm) of the 4-methoxybenzoate group to generate intense exciton split CD Cotton effects, from the signs of which the absolute configurations of phenylacetylene alcohols were unambiguously determined. As an extension of the results, a new methodology for determining the absolute configurations of acetylene alcohols having the HCCCH(OH)-moiety by combination of the Sonogashira reaction and the CD exciton chirality method has been developed and applied. Since the –* transition of acetylene triple bond is located below 180nm, it is difficult to observe ideal bisignate CD Cotton effects due to the exciton coupling between acetylene and benzoate chromophores. To observe the ideal exciton split Cotton effects necessary for the unambiguous determination of absolute configuration, the terminal acetylene group was converted, by the Sonogashira reaction, to the 4-methoxyphenylacetylene moiety, which exhibits an intense –* absorption band polarized along the long axis of the chromophore at 252nm. As a partner of exciton coupling, 4-methoxybenzoate showing a –* band at 257nm was introduced into the alcohol moiety, and the benzoates formed showed intense bisignate CD Cotton effects, from the signs of which the absolute configurations of original acetylene alcohols could be determined in an unambiguous manner.  相似文献   
110.
By employing small-angle neutron scattering (SANS), we investigated the microstructures of, poly(N-isopropylacrylamide) (PNIPA)-block-poly(ethylene glycol) (PEG) (NE) in deuterated water D2O, as related to macroscopic behaviors of fluidity, turbidity and synerisis. SANS revealed following results: (i) microphase separation occurs at around above 17 °C in a temperature range of transparent sol below 30 °C. In the microdomain appeared in the transparent sol state, both block chains of PNIPA and PEG are swollen by water; (ii) for the NE solution of polymer concentration Wp > 3.5% (w/v), corresponding to opaque gel above 30 °C, a percolated structure, i.e., network-like domain is formed by NE as a result of macrophase separation due to dehydration of the PNIPA chains. As the temperature increases toward 40 °C, the network domain is squeezed along a direction parallel to the NE interface, which leads to increase of the interfacial thickness given by swollen PEG chains and to the macroscopic synerisis behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号