Using the potentially tridentate N,N′-bis(N-heterocyclic silylene)pyridine [SiNSi] pincer-type ligand, 2,6-N,N′-diethyl-bis[N,N′-di-tert-butyl(phenylamidinato)silylene] diaminopyridine, led to the first isolable bis(silylene)pyridine-stabilized manganese(0) complex, {κ3-[SiNSi]Mn(dmpe)} 4 (dmpe = (Me2P)2C2H4), which represents an isolobal 17 VE analogue of the elusive Mn(CO)5 radical. The compound is accessible through the reductive dehalogenation of the corresponding dihalido (SiNSi)Mn(ii) complexes 1 (Cl) and 2 (Br) with potassium graphite. Exposing 4 towards the stronger π-acceptor ligands CO and 2,6-dimethylphenyl isocyanide afforded the related Mn(0) complexes κ2-[SiNSi]Mn(CO)3 (5) and κ3-[SiNSi]Mn(CNXylyl)2(κ1-dmpe) (6), respectively. Remarkably, the stabilization of Mn(0) in the coordination sphere of the [SiNSi] ligand favors the d7 low-spin electronic configuration, as suggested by EPR spectroscopy, SQUID measurements and DFT calculations. The suitability of 4 acting as a superior pre-catalyst in regioselective hydroboration of quinolines has also been demonstrated.An isolable bis(silylene)pyridine stabilized manganese(0) complex {κ3-[SiNSi]Mn(dmpe)}, isolobal to elusive Mn(CO)5 radical has been synthesized and fully characterised.相似文献
International Journal of Theoretical Physics - Let $\mathbb {F}_{p^{m}}$ be a finite field with pm elements for an odd prime p and a positive integer m. In this paper, we aim to construct... 相似文献
A rapid and sensitive gas chromatographic method using flame ionization detection (GC–FID) has been developed and validated for five process related non-chromophoric impurities viz, 2-(2-chloroethoxy)ethanol (2-CEE), piperazine, 2-(piperazin-1-yl)ethanol (HEP), 2-[2-(piperazin-1-yl)ethoxy]ethanol (HEEP), 2,2-[piperazine-1,4-diylbis(ethane-2,1-diyloxy)]diethanol (DEEP) observed during the process development of quetiapine hemifumarate, an antipsychotic drug is presented. All five non-chromophoric impurities ranging from 0.05 to 0.1% were detected using DB-5 (30 m × 0.53 mm, 5 μm) column with a good peak separation. The method was fully validated according to the ICH Q2 (R1) guidelines. The investigated validation protocols showed that the method has acceptable specificity, accuracy, linearity, precision, robustness and high sensitivity with detection limits and quantitation limits ranging from 0.001 to 0.01% and 0.004 to 0.03%, respectively. These non-chromophoric impurities generated during the process were identified by GC–MS and are characterized by MS, 1H NMR and FT-IR spectroscopy.
Electron-transfer (ET) reactions from aromatic amines to excited states of rhenium(I)-based molecular rectangles [{Re(CO)3(mu-bpy)Br}{Re(CO)3(mu-L)Br}]2 (bpy = 4,4'-bipyridine, L = 4,4'-dipyridylacetylene (dpa), I; L = 4,4'-dipyridylbutadiyne (dpb), II; and L = 1,4-bis(4'-pyridylethynyl)benzene (bpeb), III) were investigated in a dichloromethane solution using luminescence quenching techniques. Direct evidence for the ET reaction was obtained from the detection of the amine cation radical in this system using time-resolved transient absorption spectroscopy. The values of the luminescence quenching rate constants, kq, of the 3MLCT excited state of Re(I) rectangles with amines were found to be higher than those for the monomeric Re(I) complexes and other Re(I)-based metallacyclophanes. The observed kq values were correlated well with the driving force (Delta G degrees) for the ET reactions. In addition, a semiclassical theory of ET was successfully applied to the photoluminescence quenching of Re(I) rectangles with amines. 相似文献
JPC – Journal of Planar Chromatography – Modern TLC - A sensitive and accurate high-performance thin-layer chromatographic method has been developed, validated, and used for... 相似文献
A novel MB‐SWNT‐sol‐gel nanocomposite material was prepared by the sol‐gel process incorporating a redox mediator and carbon nanotubes. The electrocatalytic properties of the nanomaterial based sensor toward NADH oxidation were studied by electrochemical measurements. Significant enhancement of oxidation current is obtained at electrodes modified by MB‐SWNT‐sol‐gel in comparison with the analogous carbon black and/or graphite composite modified electrode. The usefulness of the nanocomposite material as a matrix for immobilizing enzymes is also demonstrated. Analytical parameters of D ‐lactate biosensors with and without SWNT in the hybrid film were compared demonstrating that performance of the biosensor was significantly improved when introducing SWNT. 相似文献
Thick (400 µm) glow-discharge nitrided layers, TiN+Ti2N + αTi(N) type, have been produced on the Ti-1Al-1Mn titanium alloy. Using a progressive thinning method, the polarization characteristics at different depths of nitrided layers have been measured. From the plots of obtained potentiodynamic polarization curves the depth profiles of characteristic anodic and cathodic currents (at potentials corresponding to (a) hydride formation, (b) hydrogen evolution, (c) primary passivation, (d) oxygen evolution and (e) secondary passivation) as well as polarization resistance have been determined in 0.5 M Na2SO4 solution acidified to pH = 2. The anomalously high slope of the polarization curves in the cathodic region has been ascribed to the formation of titanium hydride. It has been shown that outer nitrided layers (up to 25 µm) exhibit excellent acid corrosion resistance owing to strong inhibition of the anodic process by TiN phase. Corrosion resistance of deeper situated layers gradually decreases and at depths of 250–370 µm the corrosion process is accelerated by presence of TiO2 precipitations. Nitrided layers, unlike the alloy core, allow oxygen evolution on the oxy-nitrided surface at potential of +1.6 V and at more positive potentials gradual transformation of the surfacial film into TiO2 takes place. Secondary passivation on nitrided titanium is less efficient than that in the absence of Ti-N species. 相似文献