A magnetic solid-phase extraction (MSPE) method combined with capillary electrophoresis for the simultaneous determination of seven quinolones (QNs) (danofloxacin, ciprofloxacin, marbofloxacin, enrofloxacin, difloxacin, oxolinic acid, and flumequine), using (S)-(+)-6-methoxy-α-methyl-2-naphthaleneacetic acid as internal standard, in milk samples was developed. The variables involved in the preconcentration magnetic procedure were: the composition of the magnetic support composition, the sample pH, and the weight of magnetic adsorbent used. The variables were optimized using a simplex-lattice design. Different magnetite covered with octyl-phenyl silica adsorbents were synthesized by varying the molar ratio of phenyltrimethylsilane and octyltrimethoxysilane; the solids were evaluated for QN preconcentration. Under optimal conditions, a linear range was obtained from 27 to 1000 μg L(-1) with limits of detection ranging from 9 to 12 μg L(-1) for the seven QNs. The absolute recoveries of the seven QNs at three different spiked levels (40, 150, and 400 μg L(-1) ) ranged from 74% to 98% with a relative standard deviation less than 10% in all cases. The proposed method was applied to analyze 20 whole milk samples of different brands. All samples were positive for the presence of QN residues; in some cases, extract dilution was required. The concentrations found are in the range from 31.1 to 5047.3 μg L(-1) . Marbofloxacin was the most frequently found. The method proposed offers advantages in terms of simplicity, sensitivity, efficiency, cost, and analysis time making it an alternative for the analysis of QNs in whole milk samples. 相似文献
This study uses atomic force microscopy (AFM) force-deformation (F-Δ) curves to investigate for the first time the Young's modulus of a phospholipid microbubble (MB) ultrasound contrast agent. The stiffness of the MBs was calculated from the gradient of the F-Δ curves, and the Young's modulus of the MB shell was calculated by employing two different mechanical models based on the Reissner and elastic membrane theories. We found that the relatively soft phospholipid-based MBs behave inherently differently to stiffer, polymer-based MBs [Glynos, E.; Koutsos, V.; McDicken, W. N.; Moran, C. M.; Pye, S. D.; Ross, J. A.; Sboros, V. Langmuir2009, 25 (13), 7514-7522] and that elastic membrane theory is the most appropriate of the models tested for evaluating the Young's modulus of the phospholipid shell, agreeing with values available for living cell membranes, supported lipid bilayers, and synthetic phospholipid vesicles. Furthermore, we show that AFM F-Δ curves in combination with a suitable mechanical model can assess the shell properties of phospholipid MBs. The "effective" Young's modulus of the whole bubble was also calculated by analysis using Hertz theory. This analysis yielded values which are in agreement with results from studies which used Hertz theory to analyze similar systems such as cells. 相似文献
A series of europium cryptates are studied, using semiempirical methods to predict electronic and spectroscopic properties. The results are compared with theoretical (DFT) and experimental results published by Guillaumont and co-workers (ChemPhysChem2007, 8, 480). Triplet energies calculated by semiempirical methods have errors similar to those obtained by TD-DFT methodology but hundreds of times faster. Moreover, the semiempirical results not only reproduce well the experimental values but also help explain the low values of quantum efficiency observed for these complexes. 相似文献
Five new nitrogen heterocycles, mono‐and disubstituted tetrazoles with potential synthetic and pharmacological interest, were synthesized from α, α‐trehalose via the alkylation of commercial tetrazoles. This method appears to have broad scope with respect to the variations at positions 1 and 2 of tetrazole. 相似文献
Journal of Solid State Electrochemistry - This paper reports the development of a photoelectrochemical platform based on indium tin oxide (ITO) electrode modified with carboxyl-functionalized... 相似文献
Journal of Solid State Electrochemistry - In this study, galvanostatic electrolysis, through the use of the platinum supported on Ti (Ti/Pt) and Ti/TiO2-nanotubes/PbO2 anodes, was conducted in an... 相似文献
The primary objective of this study is to evaluate the thermal stability of the active films with the cellulose nanostructure (CNS, 5?mass%) treated with encapsulated essential oils (EOs), eugenol and linalool. CNS untreated and treated were incorporated in the poly(butylene adipate-co-terephthalate) (PBAT) polymer matrix prepared by casting. In this study, all samples were characterized by FTIR, DRX, TG, DSC and SEM, elucidating the contribution of each component in the final films. CNS untreated and treated with EOs were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis (TGA), confirming the interaction between these components. The active biofilms were analyzed by TGA and DSC analyses (differential scanning calorimetry), confirming that their thermal stability was maintained similar to the neat PBAT film, without loss of properties. The CI (crystallinity index, %) of the polymeric films was calculated from heat fusion (ΔH) values, indicating that the incorporation of the nanostructures into the PBAT matrix increases the crystallinity of the biofilms, from 11.5 (neat PBAT) to 13.8% (PBAT/CNS-E), acting as a nucleating agent in the polymeric matrix. The presence of the EOs did not decrease the CNS stability, as well of the biocomposite films. Moreover, the thermal analysis confirmed that the EO was well involved by the CNS, before and after the incorporation in the PBAT polymer, as observed in the SEM images.
The potential energy surface (PES) for the herbicide diuron (DCMU), a photosystem II inhibitor, has been extensively investigated using the quantum-mechanical semiempirical molecular orbital methods AM1 and PM3 and molecular mechanics method. A detailed conformational search has been carried out which revealed the occurrence of four genuine minimum energy structures. The relative stability of the conformers and rotational barriers to conformational interconversion were evaluated using distinct theoretical approaches. The results showed that thetrans form of the diuron molecule is more stable than thecis form in all methods, and so it may possibly be the biologically active isomer. 相似文献