首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
化学   30篇
数学   1篇
物理学   9篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
  1973年   5篇
  1972年   1篇
  1966年   1篇
  1896年   1篇
排序方式: 共有40条查询结果,搜索用时 77 毫秒
1.
2.
3.

Background

Several studies have shown that Stroop interference is stronger in children than in adults. However, in a standard Stroop paradigm, stimulus interference and response interference are confounded. The purpose of the present study was to determine whether interference at the stimulus level and the response level are subject to distinct maturational patterns across childhood. Three groups of children (6–7 year-olds, 8–9 year-olds, and 10–12 year-olds) and a group of adults performed a manual Color-Object Stroop designed to disentangle stimulus interference and response interference. This was accomplished by comparing three trial types. In congruent (C) trials there was no interference. In stimulus incongruent (SI) trials there was only stimulus interference. In response incongruent (RI) trials there was stimulus interference and response interference. Stimulus interference and response interference were measured by a comparison of SI with C, and RI with SI trials, respectively. Event-related potentials (ERPs) were measured to study the temporal dynamics of these processes of interference.

Results

There was no behavioral evidence for stimulus interference in any of the groups, but in 6–7 year-old children ERPs in the SI condition in comparison with the C condition showed an occipital P1-reduction (80–140 ms) and a widely distributed amplitude enhancement of a negative component followed by an amplitude reduction of a positive component (400–560 ms). For response interference, all groups showed a comparable reaction time (RT) delay, but children made more errors than adults. ERPs in the RI condition in comparison with the SI condition showed an amplitude reduction of a positive component over lateral parietal (-occipital) sites in 10–12 year-olds and adults (300–540 ms), and a widely distributed amplitude enhancement of a positive component in all age groups (680–960 ms). The size of the enhancement correlated positively with the RT response interference effect.

Conclusion

Although processes of stimulus interference control as measured with the color-object Stroop task seem to reach mature levels relatively early in childhood (6–7 years), development of response interference control appears to continue into late adolescence as 10–12 year-olds were still more susceptible to errors of response interference than adults.  相似文献   
4.
This communication describes the synthesis of l-methyl-2,3-diformylpyrrole. This new compound is used to prepare a new heterocycle, l-methylcyclohepta[b]pyrrol-6-one and thus allows a new synthesis of l-methylpyrrolo[2,3-d]pyridazine.  相似文献   
5.
6.
This article describes the synthesis of a new heterocycle, pyrido[2,3,f]phtalazine and three new diformylquinolincs.  相似文献   
7.
The synthesis of two new heterocycles is described: pyrido-[2,3-d]-.s-triazolo[ 3,4-f] pyrimidine and pyrido[3,2-d]-.s-triayzolo-[3,4-f] pyrimidine. 4-[I'-Pyrazolyl]pyrido[2,3-d]pyrimidines and 4-[1′-pyrazoly1] pyrido[ 3,2-d] pyrimidine are obtained by the action of 4-hydrazinopyrido[2,3-d]pyrimidine and 4-hydrazinopyrido-[3,2-d]pyrimidine with several β-diketones.  相似文献   
8.
This article demonstrates how the adhesion rates of micrometer-scale particles on a planar surface can be manipulated by nanometer-scale features on the latter. Here, approximately 500-nm-diameter spherical silica particles carrying a substantial and relatively uniform negative charge experienced competing attractions and repulsions as they approached and attempted to adhere to a negative planar silica surface carrying flat 11-nm-diameter patches of concentrated positive charge. The average spacing of these patches profoundly influenced the particle adhesion. For dense positive patch spacing on the planar collector, the particle adhesion was rapid, and the fundamental adhesion kinetics were masked by particle transport to the interface. For patch densities corresponding to a planar surface with net zero charge, particle adhesion was still rapid. Adhesion kinetics were observably reduced for patch spacings exceeding 20 nm and become slower with increased patch spacing. Ultimately, above a critical or threshold average patch spacing of 32 nm, no particle adhesion occurred. The presence of the threshold average patch spacing suggests that more than one positive surface patch was needed for particle capture under the particular conditions of this study. Furthermore, at the threshold, the length scales of the patch spacing and of the interactive surface area between the particle and the surface become similar: The concept of adhesion dominated by the matching of length scales is reminiscent of pattern recognition, even though the patch distribution on the collector is random in this work. Indeed, fluctuations play a critical role in these adhesion dynamics, hence the current behavior cannot be predicted by a mean field approach.  相似文献   
9.
The selective liquid–liquid extraction of various transition metal cations from the aqueous phase to the organic phase was carried out using a 14-membered N2O2S2-macrobicycle. Metal picrates such as Pb2+, Co2+, Zn2+, Ni2+,Cu2+ and Cd2+ were used in this extraction studies. It was found that the ligand showed moderate selectivity towards Pb2+ only among the other metals. The extraction constant (log K ex) was determined to be 13.8 for Pb2+ complex.  相似文献   
10.
This work explores how long-range non-specific interactions, resulting from small amounts of adsorbed fibrinogen, potentially influence bioadhesion. Such non-specific interactions between protein adsorbed on a biomaterial and approaching cells or bacteria may complement or even dominate ligand–receptor mating. This work considers situations where the biomaterial surface and the approaching model cells (micron-scale silica particles) exhibit strong electrostatic repulsion, as may be the case in diagnostics and lab-on-chip applications. We report that adsorbed fibrinogen levels near 0.5 mg/m2 produce non-specific fouling. For underlying surfaces that are less fundamentally repulsive, smaller amounts of adsorbed fibrinogen would have a similar effect. Additionally, it was observed that particle adhesion engages sharply and only above a threshold loading of fibrinogen on the collector. Also, in the range of ionic strength, I, below about 0.05 M, increases in I reduce the fibrinogen needed for microparticle capture, due to screening of electrostatic repulsions. Surprisingly, however, ionic strengths of 0.15 M reduce fibrinogen adsorption altogether. This observation opposes expectations based on DLVO arguments, pointing to localized electrostatic attractions and hydration effects to drive silica–fibrinogen adhesion. These behaviors are benchmarked against microparticle binding on silica surfaces carrying small amounts of a polycation, to provide insight into the role of electrostatics in fibrinogen-driven non-specific adhesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号