首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   5篇
  国内免费   1篇
化学   212篇
晶体学   7篇
力学   6篇
数学   25篇
物理学   110篇
  2023年   3篇
  2022年   13篇
  2021年   9篇
  2020年   4篇
  2019年   11篇
  2018年   12篇
  2017年   8篇
  2016年   15篇
  2015年   7篇
  2014年   27篇
  2013年   38篇
  2012年   27篇
  2011年   31篇
  2010年   28篇
  2009年   17篇
  2008年   16篇
  2007年   9篇
  2006年   18篇
  2005年   18篇
  2004年   8篇
  2003年   12篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1987年   4篇
  1982年   2篇
排序方式: 共有360条查询结果,搜索用时 14 毫秒
71.
We report on the sol-gel synthesis of Zn1−xCrxO (x=0.0, 0.05, 0.10, 0.15 and 0.20) nanoparticles. These nanoparticles were characterized by using thermogravimetry/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and Photoluminescence (PL). Electronegativity of Cr ions (Cr3+) reduces the final decomposition temperature by 40 °C and activation energy of the reaction when Cr is doped into ZnO. Doping of higher Cr concentration (x≥0.10) into ZnO shows formation of secondary spinel (ZnCr2O4) phase along with the hexagonal (ZnO) and is revealed by XRD. Formation of secondary phase changes the activation energy of the reaction and thus the strain in ZnO lattice. In Raman spectra, additional Raman modes have been observed for Zn1−xCrxO nanoparticles, which can be assigned to the modes generated due to Cr doping. The Cr doping into ZnO is also supported by PL, in which vacancies are formed with Cr ion incorporation and emission band shifts towards higher wavelength.  相似文献   
72.
Litchi (Litchi chinensis) is a non-climacteric tropical fruit. The fruit has a short shelf-life making its marketing difficult. Physical, biochemical, microbiological, and organoleptic properties of two major commercially grown Indian cultivars of litchi, ‘Shahi’ and ‘China’ were studied. The effect of gamma radiation processing and low temperature storage on the above parameters was evaluated to standardize the optimal process parameters for shelf-life extension of litchi. Physical and biochemical parameters analyzed included weight, moisture, pH, titratable acidity, texture, color, total and reducing sugar, total soluble solids, vitamin C, and flavonoid content. Weight, moisture content, and pH in the fresh fruit ranged between 21–26 g, 74–77%, and 3.7–4.4, respectively, whereas, total and reducing sugar ranged 10–15, and 10–13 g%, respectively. In ‘Shahi’ vitamin C content was found to be around 17–19 mg%, whereas, in ‘China’ it was 22–28 mg%. Flavonoid content was in the range of 26–34 μg catechin equivalents/g of fresh fruit. Total surface and internal bacterial load was around 4 and 3 log cfu/g, respectively. Surface yeast-mold count (YMC) was ~3 log cfu/g whereas internal YMC was ~2 log cfu/g. Radiation treatment reduced microbial load in a dose dependent manner. Treatment at 0.5 kGy did not significantly affect the quality parameters of the fruit. Treated fruits retained the “good” organoleptic rating during storage. Thus, radiation treatment (0.5 kGy) in combination with low temperature (4 °C) storage achieved a shelf-life of 28 days for litchi fruit.  相似文献   
73.
Using interfacial polymerization (IP) of m-phenylenediamine aqueous solution containing polyoxovanadate nanoclusters (POV) and trimesoyl chloride (TMC) in organic solution, we fabricated a novel polyamide (PA)- polyoxovanadate nanocluster (POV) nanocomposite membranes (PA-POV TFN). The chemical structures and morphologies of the synthesized membranes were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscope (AFM), scanning electron microscopy (SEM) and water contact angle measurements. Experimental results showed that the performances of PA-POV TFN membranes are remarkably dependent on POV incorporation in the membranes, which could be controlled by using different amounts of POV particles. Moreover, the PA-POV TFN membranes illustrated outstanding antibacterial properties against Gram-negative E. coli. On the other hand, the incorporation of various amounts of POV in the membranes improved the membrane separation performances (water flux and salt rejection) as well as the antibacterial activity in FO process as compared to the original thin-film composite (TFC) polyamide membrane.  相似文献   
74.
Molar excess volume V E and enthalpy H E data have been measured at 25°C for pyridine A saturated with anhydrous cupric chloride (S) [A(S)]+ B [where B is aniline or o-toluidine (OT) or formamide (FD) or N, N-dimethylformamide (NND)] mixtures on the assumption that while the standard state of B is that of pure components B, the standard state of A(S) is that of A saturated with the salt S. The excess volume or enthalpy data for an equimolar mixture at a given temperature have been utilized to evaluate the interactional parameter X12 of the Sanchez and Lacombe theory of fluid mixtures at that temperature, and the same has been combined with V E (x A ) data for a good prediction not only of the coresponding H E (x A ) data for the mixture but also the extent of unlike interactions between the A(S) and B components of these A(S)+B mixtures.  相似文献   
75.
76.
77.
78.
We formulate the data analysis problem for the detection of the Newtonian coalescing-binary signal by a network of laser interferometric gravitational wave detectors that have arbitrary orientations, but are located at the same site. We use the maximum likelihood method for optimizing the detection problem. We show that for networks comprising of up to three detectors, the optimal statistic is just the matched network-filter. Alternatively, it is simply a linear combination of the signal-to-noise ratios of the individual detectors. This statistic, therefore, can be interpreted as the signal-to-noise ratio of the network. The overall sensitivity of the network is shown to increase roughly as the square-root of the number of detectors in the network. We further show that these results continue to hold even for the restricted post-Newtonian filters. Finally, our formalism is general enough to be extended, in a straightforward way, to address the problem of detection of such waves from other sources by some other types of detectors, eg., bars or spheres, or even by networks of spatially well-separated detectors.  相似文献   
79.
Electrical properties of SiO2 grown on the Si-face of the epitaxial 4H-SiC substrate by wet thermal oxidation technique have been experimentally investigated in metal oxide-silicon carbide (MOSiC) structure with varying oxide thicknesses employing Poole-Frenkel (P-F) conduction mechanism. The quality of SiO2 with increasing thickness in MOSiC structure has been analysed on the basis of variation in multiple oxide traps due to effective P-F conduction range. Validity of Poole-Frenkel conduction is established quantitatively employing electric field and the oxide thickness using forward I–V characteristics across MOSiC structures. From P-F conduction plot (ln(J/E) vs. E 1/2), it is revealed that Poole-Frenkel conduction retains its validation after a fixed electric field range. The experimental methodology adopted is useful for the characterization of oxide films grown on 4H-SiC substrate.  相似文献   
80.
We study the Holstein-double exchange model in three dimensions in the presence of substitutional disorder. Using a new Monte Carlo technique we establish the phase diagram of the clean model and then focus on the effect of varying electron-phonon coupling and disorder at fixed electron density. We demonstrate how extrinsic disorder controls the interplay of lattice polaron effects and spin fluctuations and leads to widely varying regimes in transport. Our results on the disorder dependence of the ferromagnetic T(C) and metal-insulator transitions bear direct comparison to data on the "optimally doped," x = 0.3-0.4, manganites. We highlight disorder induced polaron formation as a key effect in these materials, organize a wide variety of data into a simple "global phase diagram," and make several experimental predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号