首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   5篇
化学   91篇
力学   2篇
数学   3篇
物理学   15篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   14篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1993年   2篇
  1992年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有111条查询结果,搜索用时 0 毫秒
21.
Goyal RN  Chatterjee S  Rana AR 《Talanta》2010,83(1):149-155
Electrochemical sensor employing edge-plane pyrolytic graphite electrode (EPPGE) for the sensitive detection of hydrocortisone (HC) is delineated for the first time. The electrochemical properties are investigated exercising the cyclic voltammetry and square-wave voltammetry (SWV). When equating with the bare basal-plane pyrolytic graphite electrode (BPPGE), the EPPGE gave better response towards the detection of HC both in terms of sensitivity and detection limit. The voltammetric results indicated that EPPGE remarkably enhances the reduction of HC which leads to considerable amelioration of peak current with shift of peak potential to less negative values. The difference in the surface morphology of two electrodes has been studied. Also, the EPPGE delivered an analytical performance for HC with a sensitivity of 45 nA nM−1 and limit of detection of 88 nM in the concentration range 100-2000 nM. The method has been utilized for the determination of HC in pharmaceuticals and real samples. The electroanalytical method using EPPGE is the most sensitive method for determination of HC with lowest limit of detection to date. The major metabolites present in blood plasma did not intervene with the present investigation as they did not exhibit reduction peak in the experimental range used. A comparison of results with high performance liquid chromatography (HPLC) signalizes a good agreement.  相似文献   
22.
23.
24.
The tensile properties of polyether-based polyurethane (PU) filaments decrease with increasing chlorine concentrations as well as with treatment times. Fourier transform infrared (FTIR) results show the formation of quinoid, azo, and aldehyde groups in the chlorine-treated PU, and increased hydrogen bonding between the C O C in the soft segment and the N H in the hard segments. A breakdown mechanism involving chain cleavages along the ether linkages in the soft segments as well as at the urethane linkages of the hard–soft segment interfaces is proposed. Chlorine-treated PU showed increased solubility in tetrahydrofuran (THF). The molecular weight data of the THF-soluble portion of treated PU also support the proposed locations of chain scissions. The increased soft segment Tg and Tm with increasing chlorine concentrations are results of increased phase-mixing and hydrogen bonding. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3263–3273, 1997  相似文献   
25.
The maximum clique problem is an important problem in graph theory. Many real-life problems are still being mapped into this problem for their effective solutions. A natural extension of this problem that has emerged very recently in many real-life networks, is its fuzzification. The problem of finding the maximum fuzzy clique has been formalized on fuzzy graphs and subsequently addressed in this paper. It has been shown here that the problem reduces to an unconstrained quadratic 0–1 programming problem. Using a maximum neural network, along with mutation capability of genetic adaptive systems, the reduced problem has been solved. Empirical studies have been done by applying the method on stock flow graphs to identify the collusion set, which contains a group of traders performing unfair trading among themselves. Additionally, it has been applied on a gene co-expression network to find out significant gene modules and on some benchmark graphs.  相似文献   
26.
Two unique lanthanide‐based cages [Ln10( L )52‐OH)6(H2O)22](Cl)4?7 H2O ([Gd10] and [Dy10]) have been synthesized by using a hydrazone‐based ligand H4 L (H4 L =2,6‐bis[(3‐methoxysalicylidene)hydrazinecarbonyl]pyridine) and LnCl3?x H2O. Structural characterization of [Gd10] reveals an aesthetically pleasing self‐assembly of five L 4? and ten Gd3+ ions forming a 2×[1×5] rectangular array. The ladder‐shaped cage consists of three “rungs” and two “rails” that are occupied by five ligands. Six out of ten gadolinium centers act as rung locks. Further analysis revealed that three chloride ions are encapsulated inside each discrete [Gd10] molecule through hydrogen bonding and other noncovalent interactions. Both the complexes ([Gd10] and [Dy10]) were characterized by powder X‐ray diffraction and thermogravimetric analysis, which shows that they are isostructural in nature. Magnetic investigations reveal that [Gd10] is a good candidate for magnetic refrigeration with a significant entropy change (?ΔSm) of 37.4 J kg?1 K?1 for an applied field of 7 T and at 3 K. Whereas [Dy10] shows single‐molecule‐magnet‐like behavior.  相似文献   
27.
Aggregation behavior of dodecyldimethyl-N-2-phenoxyethylammonium bromide commonly called domiphen bromide (DB) was studied in aqueous solution. The Krafft temperature of the surfactant was measured. The surfactant has been shown to form micellar structures in a wide concentration range. The critical micelle concentration was determined by surface tension, conductivity, and fluorescence methods. The conductivity data were also employed to determine the degree of surfactant counterion dissociation. The changes in Gibb's free energy, enthalpy, and entropy of the micellization process were determined at different temperature. The steady-state fluorescence quenching measurements with pyrene and N-phenyl-1-naphthylamine as fluorescence probes were performed to obtain micellar aggregation number. The results were compared with those of dodecyltrimethylammonium bromide (DTAB) surfactant. The micelle formation is energetically more favored in DB compared to that in DTAB. The 1H-NMR spectra were used to show that the 2-phenoxyethyl group, which folds back onto the micellar surface facilitates aggregate formation in DB.  相似文献   
28.
High-precision quantum chemical calculations have been performed for atmospherically important halomethane derivatives including CF, CF(3), CHF(2), CH(2)F, CF(2), CF(4), CHF, CHF(3), CH(3)F, CH(2)F(2), CCl, CCl(3), CHCl(2), CH(2)Cl, CCl(2), CCl(4), CHCl, CHCl(3), CH(3)Cl, CH(2)Cl(2), CHFCl, CF(2)Cl, CFCl(2), CFCl, CFCl(3), CF(2)Cl(2), CF(3)Cl, CHFCl(2), CHF(2)Cl, and CH(2)FCl. Theoretical estimates for the standard enthalpy of formation at 0 and 298.15 K as well as for the entropy at 298.15 K are presented. The determined values are mostly within the experimental uncertainty where accurate experimental results are available, while for the majority of the considered heat of formation and entropy values the present results represent the best available estimates.  相似文献   
29.
30.
A fullerene‐C60‐modified glassy carbon electrode has been examined for the simultaneous determination of 2′‐deoxyadenosine (2′‐dAdo) and adenine in human blood and urine using Osteryoung square‐wave voltammetry (OSWV) at pH 7.2. Compared to bare glassy carbon electrode (GCE), the modified electrode displays a shift of the oxidation potential in the negative direction with significant increase in the peak current for both the analytes. At modified electrode well‐defined anodic peaks at potential of 1248 mV and 994 mV are observed for 2′‐dAdo and adenine respectively. Linear calibration curves were obtained within the concentration range 10 nM to 100 μM for both the compounds in 0.1 M phosphate buffer solution (PBS) with the limit of detection 0.8×10?8 M and 0.95×10?8 M for 2′‐dAdo and adenine respectively. The analytical utility of the present method is demonstrated by quantitative detection of 2′‐dAdo and adenine in human urine of normal subjects as well as in patients with hepatocellular carcinoma. Interfering effect of some coexisting metabolites has also been reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号