首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   9篇
  国内免费   3篇
化学   132篇
力学   2篇
数学   35篇
物理学   38篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   2篇
  2013年   9篇
  2012年   11篇
  2011年   8篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   10篇
  2000年   10篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
51.
52.
Low molecular weight (M(w)) poly(L-lactic acid) (PLA) nanoparticles were coated with polyelectrolytes (PEs) by layer-by-layer (LbL) technique using a filtration approach. Poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) were applied as PEs in coating. LbL coating is aimed to use in producing (nano)particulate drug delivery systems with improved biocompatibility and sustained or targeted release of drug substances. Nanoparticles of rapidly biodegradable polymers, like the low M(w) PLA, open up a possibility to control the release of the encapsulated substance by the coating, but set challenges to the coating process due to increased aggregation tendency and degradation rate of the polymer. When the core PLA nanoparticles were prepared by nanoprecipitation, surface properties of the nanoparticles were affected by solvent selection. Successful LbL coating of the PLA nanoparticles was obtained only with chloroform, but not with dichloromethane as the solvent during nanoprecipitation. Reason for this was found to be the more charged surface of the nanoparticles prepared with chloroform compared to the nanoparticles prepared with dichloromethane.  相似文献   
53.
Different types of microfibrillated cellulose (MFC) and fines suspensions were produced, characterized, and then added to a papermaking pulp suspension. High and medium molar mass cationic polyelectrolytes were used as fixatives. The drainage behavior of the pulp suspensions with additives were evaluated against the strength properties of hand sheets made thereof. The effects of salt concentration, pH, fixative type, dosage and type of fibrillar material on drainage were examined. All the MFC and fines samples produced had clearly different properties due to their dissimilar production methods, and they also introduced specific responses on the measured drainage and paper strength. Generally, the addition of MFC decreased the drainage rate of pulp suspension and increased the strength of paper. However, it was shown that by optimum selection of materials and process conditions an enhancement of the strength properties could be achieved without simultaneously deteriorating the drainage.  相似文献   
54.
55.
56.
57.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for qualitative and quantitative end-group analysis of a small molecular weight polyester, poly(2-butyl-2-ethyl-1,3-propylene phthalate). The presence of carboxyl-terminated linear and cyclic polyester oligomers was confirmed with the help of simple sample preparation methods. The presence of carboxyl end-groups in the polyester chains was verified through their formation of carboxylate salts with alkali metal cations. Cyclic oligomers were identified through deuterium exchange of the exchangeable protons of the polyester. Various inorganic salts were tested for salt formation of the carboxyl end-groups, but only the alkali metal salts proved effective. The influence of the alkali metal salts on the results of the quantitative end-group analysis was also studied. The relative amounts of differently terminated and cyclic oligomers were calculated when the alkali metal salts were used with different matrices. The results showed that both the salts and the matrices used in sample preparation can have a marked effect on the quantitative results of the end-group analysis. The measurements were carried out using 2,5-dihydroxybenzoic acid (DHB), 1,8, 9-trihydroxyanthracene (dithranol), and 2-(4-hydroxyphenylazo)benzoic acid (HABA) as matrix compounds. Dithranol and HABA repeatably exhibited similar results, and these results differed from those obtained with DHB probably because of the different ionization mechanisms in the MALDI process. Copyright-Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
58.
Acid strength distributions of Mo–Al–Si and Ni–Mo–Al oxide systems have been found by means of a relationship that gives pKa values from amounts of ammonia adsorption. Molybdenum is suggested to cause a homogenization in the acid strength distribution of alumina but a heterogenization in silicaalumina, whereas nickel is found to neutralize strong acid sites inherent to molybdenum.
Mo–Al–Si Ni–Mo–Al , . , , .
  相似文献   
59.
Nootkatone, or (4R,4aS,6R)‐4,4a,5,6,7,8‐hexa­hydro‐4,4a‐di­methyl‐6‐(1‐methyl­ethenyl)­naphthalen‐2(3H)‐one, C15H22O, a sesquiterpene with strong repellent properties against Formosan subterranean termites and other insects, has the valencene skeleton. The di­bromo derivative (1S,3R,4S,4aS,6R,8aR)‐1,3‐di­bromo‐6‐iso­propyl‐4,4a‐di­methyl‐1,2,3,4,5,6,7,8‐octa­hydro­naphthalen‐2‐one, C15H24Br2O, has two independent mol­ecules in the asymmetric unit, which differ in the rotation of the iso­propyl group with respect to the main skeleton. The C—Br distances are in the range 1.950 (4)–1.960 (4) Å. Both independent molecules form zigzag chains, with very short intermolecular carbonyl–carbonyl interactions, having the perpendicular motif and O⋯C distances of 2.886 (6) and 2.898 (6) Å. These chains are flanked by intermolecular Br⋯Br interactions of distances in the range 4.067 (1)–4.218 (1) Å. The absolute configuration of the di­bromo derivative was determined, from which that of nootkatone was inferred.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号