首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
化学   52篇
晶体学   3篇
力学   2篇
数学   4篇
物理学   21篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   8篇
  2015年   2篇
  2014年   2篇
  2013年   11篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1973年   1篇
排序方式: 共有82条查询结果,搜索用时 0 毫秒
81.
Abstract

Normal unenhanced Raman spectra (NURS) of low-polarizability CO molecules were observed for the first time on cobalt at R. T. and residual gas pressure. We assign five bands observed between 2030–2130 cm?1 to linear chemisorbed CO species, while those observed between 1840–2010 cm?1 have been ascribed to the 2-fold chemisorbed species. The three bands observed between 1740–1830 cm?1 we believe are due to the 3-fold species. The corresponding fourteen Co-C stretches were observed and assigned. A model based upon electron backdonation is proposed for each of the three structures. NURS were also observed at R. T. for physisorbed CH4 and assignments are made to the four frequencies of CH4.  相似文献   
82.
Very often, in the course of uncertainty quantification tasks or data analysis, one has to deal with high-dimensional random variables. Here the interest is mainly to compute characterizations like the entropy, the Kullback–Leibler divergence, more general f $$ f $$ -divergences, or other such characteristics based on the probability density. The density is often not available directly, and it is a computational challenge to just represent it in a numerically feasible fashion in case the dimension is even moderately large. It is an even stronger numerical challenge to then actually compute said characteristics in the high-dimensional case. In this regard it is proposed to approximate the discretized density in a compressed form, in particular by a low-rank tensor. This can alternatively be obtained from the corresponding probability characteristic function, or more general representations of the underlying random variable. The mentioned characterizations need point-wise functions like the logarithm. This normally rather trivial task becomes computationally difficult when the density is approximated in a compressed resp. low-rank tensor format, as the point values are not directly accessible. The computations become possible by considering the compressed data as an element of an associative, commutative algebra with an inner product, and using matrix algorithms to accomplish the mentioned tasks. The representation as a low-rank element of a high order tensor space allows to reduce the computational complexity and storage cost from exponential in the dimension to almost linear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号