首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
化学   59篇
数学   8篇
物理学   22篇
  2022年   6篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1932年   1篇
排序方式: 共有89条查询结果,搜索用时 343 毫秒
41.
ZnO films were prepared by sol–gel method and deposited onto glass substrates with spin coating system. XRD patterns and FESEM analysis were used to investigate the effect of deposition parameters such as spin speed and molar concentration on the crystallinity and surface morphology of the films. XRD patterns show that ZnO films are polycrystalline with type-wurtzite hexagonal structure. The film which is deposited at 4000 rpm and with 0.5 M sol has the best crystallinity. The FESEM micrographs showed that the surface morphology of the films was not significantly affected from the spin speed. FESEM micrographs showed that the crystallite sizes of 1000, 4000 and 5000 rpm are almost same. But 2000 and 3000 rpm have lower crystallite sizes than the others. Also, the amount of voids in the 1 M was found higher. The effect of spin speed and molar concentration on the optical properties of ZnO films was investigated by PL spectroscopy. The electrical properties of the ZnO films were investigated by using two probe methods in dark. The highest conductivity values were obtained for ZnO films prepared by 4000 spin speed and 0.5 M of concentration.  相似文献   
42.
A highly sensitive, simple and low cost sensor for the quantification of the diclofenac has been constructed. This sensor consists of a carbon paste nano-structured by Multi-Walled Carbon Nanotubes (G-MWCNT)-CPE. Scanning electron microscopy (SEM) and voltammetry technique were used to characterize the electrode material and to determine the analytical performances of the sensor in comparison with those obtained at a G-CPE. The electrochemical oxidation of diclofenac on both G-CPE and (G-MWCNT)-CPE electrodes is mainly controlled by adsorption, presenting a maximum peak current intensity in H2SO4 0.5 mol L−1. The carbon nanotubes, as well as they provide higher conductivity of the paste, act as spacers between the flake graphite particles and avoid their stacking in order to make the surface of graphite particles more accessible to DCF adsorption. The voltammetric measurements of diclofenac on (G-MWCNT)-CPE provide a large quantification range from 0.02 to 1 μmol L−1, a detection limit of 0.004 μmol L−1 and quantification limit of 0.014 μmol L−1 under the optimized operating conditions (H2SO4, 0.25 M+KCl 0.25 M, scan rate of 30 mV s−1, preconcentration time 18 min. and MWNTC% (30 %)). The (G-MWCNT)-CPE sensor was successfully applied to natural water samples, just acidified with sulfuric acid (pH<1). These samples were doped with diclofenac in sub-micromolar range and the developed method was validated with excellent recoveries (within a maximum of 3 % difference from 100 %) for all samples indicating no interference effects of the water matrix.  相似文献   
43.
Journal of Fluorescence - A propylimidazole functionalized coumarin derivative (IPC) was fabricated for the first time and applied as a dual responsive fluorescent chemoprobe for sensitive and...  相似文献   
44.
The multivariate calibration methods—partial least squares (PLS), orthogonal signal correction and partial least squares (OSC‐PLS)—were employed for the prediction of total antioxidant activities of four Prunella L. species. High‐performance liquid chromatography (HPLC) and spectrophotometric approaches were used to determine the total antioxidant activity of the Prunella L. samples. Several preprocessing techniques such as smoothing and normalization were employed to extract the chemically relevant information from the data after alignment with correlation optimized warping. The importance of the preprocessing was investigated by calculating the root mean square error for the calibration set for the total antioxidant activity of Prunella L. samples. The models developed on the basis of the preprocessed data were able to predict the total antioxidant activity with a precision comparable to that of the reference 2,2‐azino‐di‐(3‐ethylbenzothialozine‐sulfonic acid) and 2,2‐diphenyl‐1‐picrylhydrazyl methods. The OSC‐PLS model seems preferable because of its predictive and describing abilities and good interpretability of the contribution of compounds to the total antioxidant activity. The contribution of individual phenolic compounds to the total antioxidant activity was identified by HPLC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
45.
The non-isothermal kinetics of mullite formation from both non-activated and mechanically activated kaolinite?+?alumina ceramic system have been studied by differential thermal analysis (DTA). The mixture of kaolinite and alumina was activated mechanically in a planetary mill, while amorphization in the kaolinite and alumina structure was studied by X-ray diffraction analysis. The activation energies depending on the conversion for mullite formation have been calculated from the DTA curves by using the non-isothermal method of Coats and Redfern at heating rates of 5, 10, 15, and 20?°C?min?1. The mechanical activation of the kaolinite and alumina mixture resulted in the decrease in activation energy values for mullite formation.  相似文献   
46.
Measurement of total antioxidant activity/capacity of polyphenols in various solvent media necessitates the use of cyclodextrins to solubilize lipophilic antioxidants of poor aqueous solubility. The inclusion complexes of the slightly water soluble antioxidant, rosmarinic acid (RA), with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxyethyl-β-cyclodextrin (HE-β-CD), and methyl-β-cyclodextrin (M-β-CD) were investigated for the first time. The effect of cyclodextrins (CDs) on the spectral features of RA was measured in aqueous medium using UV-vis and steady-state fluorescence techniques by varying the concentrations of CDs. The molar stoichiometry of RA-CD inclusion complexes was verified as 1:1, and the formation constants of the complexes were determined from Benesi-Hildebrand equation using fluorescence spectroscopic data. Among the CDs, maximum inclusion ability was measured in the case of M-β-CD followed by HP-β-CD, HE-β-CD, β-CD and α-CD. Solid inclusion complexes were prepared by freeze drying, and their functional groups were analyzed by IR spectroscopy. Antioxidant capacity of CD-complexed rosmarinic acid was measured to be higher than that of the lone hydroxycinnamic acid by the CUPric Reducing Antioxidant Capacity (CUPRAC) method. The mechanism of the TAC increase was interpreted as the stabilization of the 1-e oxidized o-catechol moiety of RA by enhanced intramolecular H-bonding in a hydrophobic environment provided by CDs, mostly by M-β-CD.  相似文献   
47.
A novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) method was developed for the selective determination of polyphenols (flavonoids, simple phenolic and hydroxycinnamic acids) in complex plant matrices. The method combines chromatographic separation, constituent analysis, and post-column identification of antioxidants in plant extracts. The separation of polyphenols was performed on a C18 column using gradient elution with two different mobile phase solutions, i.e., MeOH and 0.2% o-phosphoric acid. The HPLC-separated antioxidant polyphenols in the extracts react with copper(II)-neocuproine (Cu(II)-Nc) reagent in a post-column reaction coil to form a derivative. The reagent is reduced by antioxidants to the copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The negative peaks of antioxidant constituents were monitored by measuring the increase in absorbance due to Cu(I)-Nc. The detection limits of polyphenols at 450 nm (in the range of 0.17-3.46 μM) after post-column derivatization were comparable to those at 280 nm UV detection without derivatization. The developed method was successfully applied to the identification of antioxidant compounds in crude extracts of Camellia sinensis, Origanum marjorana and Mentha. The method is rapid, inexpensive, versatile, non-laborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of antioxidant constituents of complex plant samples.  相似文献   
48.
Polymerization of β‐myrcene with neodymium borohydride‐based coordination catalysts is very efficient, affording poly‐β‐myrcene (polymyrcene, PMy) with high selectivity. With stoichiometric amounts of n‐butylethyl magnesium (BEM) as co‐catalyst, good control over macromolecular data along with cis‐stereoselectivity up to 98.5%, are obtained. In the presence of excess BEM, high level of transfer reactions efficiency between neodymium and magnesium is clearly evidenced whereas the selectivity switches to 3,4‐rich. Combining the neodymium pre‐catalyst with triisobutyl aluminum in the presence of a boron activator affords PMy in good yield, but the polymer material displays low solubility, likely due to the occurrence of crosslinking. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
49.
The potential use of nanofiltration polyamide membrane for removing cobalt and lead ions from wastewater was investigated. Rejection experiments were conducted with Pb(NO3)2 and Co(NO3)2 in both single-salt solutions and mixtures. Experimental rejection rates were corrected for concentration polarization phenomenon by means of film theory. The structural features of the membrane (pore radius and thickness-to-porosity ratio) were first estimated from the fitting of glucose rejection rates. Its surface charge properties were then investigated in single-salt solutions at pH values between 3 and 7. Rejection of both heavy metal ions was found to be influenced by operating conditions such as permeate flux, solution pH and feed salt concentration. In single-salt solutions, rejection of lead was higher than that of cobalt at pH ≥ 5. This behavior may be explained by (i) higher normalized volume charge density in the Pb(NO3)2 than in the Co(NO3)2 solution and (ii) lower ionic strength of the Pb(NO3)2 solution as compared with the Co(NO3)2 solution. At pH < 5, the dielectric exclusion would be more important for Co(NO3)2 than for Pb(NO3). Lead rejection was almost the same in both single-salt solutions and ternary mixtures, whereas cobalt rejection was strongly affected by the presence of lead. Cobalt was found to be rejected much more than lead in mixtures at equal mass concentrations, the difference between rejections of the two cations being greater as pH increased.  相似文献   
50.
A biosensor based on conductive poly(pyrrole‐co‐pyrrole‐2‐carboxylic acid) [Poly(Py‐co‐PyCOOH)] copolymer film coated gold electrode was developed for the quantitative phosphate determination. Enzyme pyruvate oxidase was immobilized chemically via the functional carboxylated groups of the copolymer. The potential to be applied which is deficiency of phosphate biosensor studies for precise phosphate detection was clarified by using differential pulse voltammetry technique. Performance of the sensing ability of the biosensor was improved by optimizing cofactor/cosubstrate concentrations, polymeric film density and pH. The biosensor showed a linearity up to phosphate concentration of 5 mM, operational stability with a relative standard deviation (RSD) of 0.07 % (n=7) and accuracy of 101 % at ?0.15 V (vs. Ag/AgCl). Detection limit (LOD) and sensitivity were calculated to be 13.3 μM and 5.4 μA mM?1 cm?2, respectively by preserving 50 % of its initial response at the end of 30 days. It's performance was tested to determine phosphate concentrations in two streams of Zonguldak City in Turkey. Accuracy of phosphate measurement in stream water was found to be 91 %.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号