全文获取类型
收费全文 | 163篇 |
免费 | 8篇 |
国内免费 | 1篇 |
专业分类
化学 | 120篇 |
晶体学 | 2篇 |
力学 | 1篇 |
数学 | 7篇 |
物理学 | 42篇 |
出版年
2023年 | 1篇 |
2021年 | 2篇 |
2020年 | 6篇 |
2019年 | 5篇 |
2016年 | 7篇 |
2015年 | 3篇 |
2014年 | 6篇 |
2013年 | 3篇 |
2012年 | 11篇 |
2011年 | 10篇 |
2010年 | 3篇 |
2009年 | 6篇 |
2008年 | 9篇 |
2007年 | 13篇 |
2006年 | 14篇 |
2005年 | 5篇 |
2004年 | 5篇 |
2003年 | 2篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1997年 | 1篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 8篇 |
1993年 | 5篇 |
1992年 | 7篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 4篇 |
1983年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1970年 | 1篇 |
1968年 | 1篇 |
1959年 | 1篇 |
排序方式: 共有172条查询结果,搜索用时 15 毫秒
21.
Theoretical and computational methods are powerful in studying transition metal complexes. Our theoretical studies of C–H σ‐bond activation of benzene by Pd(II)–formate complex and that of methane by Ti(IV)‐imido complex successfully disclosed that these reactions are understood to undergo heterolytic σ‐bond activation and the driving force is the formation of strong O–H and N–H bonds in the former and the latter, respectively. Orbital interactions are considerably different from those of σ‐bond activation by oxidative addition. The transmetallation, which is a key process in the cross‐coupling reaction, is understood to be heterolytic σ‐bond activation. Our theoretical study clarified how to accelerate this transmetallation. Also, we wish to discuss weak points in theoretical and computational studies of large systems including transition metal elements, such as the necessity to incorporate solvation effect and to present quantitatively correct numerical results. The importance of solvation effects is discussed in the oxidative addition of methyliodide to Pt(II) complex which occurs in a way similar to an SN2 substitution. To apply the CCSD(T) (coupled cluster singles and doubles with perturbative triples correction) method, which is the gold standard of electronic structure theory, to large system, we need to reduce the size of the system by employing a small model. But, such modeling induces neglects of electronic and steric effects of substitutents which are replaced in the small model. Frontier‐orbital‐consistent quantum‐capping potential (FOC‐QCP) was recently proposed by our group to incorporate the electronic effects of the substituents neglected in the modeling. The CCSD(T) calculation with the FOC‐QCP was successfully applied to large systems including transition metal elements. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 10: 000–000; 2010: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900019 相似文献
22.
Activation of Strong Boron–Fluorine and Silicon–Fluorine σ‐Bonds: Theoretical Understanding and Prediction 下载免费PDF全文
Dr. Hajime Kameo Prof. Shigeyoshi Sakaki 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(39):13588-13597
The oxidative addition of BF3 to a platinum(0) bis(phosphine) complex [Pt(PMe3)2] ( 1 ) was investigated by density functional calculations. Both the cis and trans pathways for the oxidative addition of BF3 to 1 are endergonic (ΔG°=26.8 and 35.7 kcal mol?1, respectively) and require large Gibbs activation energies (ΔG°≠=56.3 and 38.9 kcal mol?1, respectively). A second borane plays crucial roles in accelerating the activation; the trans oxidative addition of BF3 to 1 in the presence of a second BF3 molecule occurs with ΔG°≠ and ΔG° values of 10.1 and ?4.7 kcal mol?1, respectively. ΔG°≠ becomes very small and ΔG° becomes negative. A charge transfer (CT), F→BF3, occurs from the dissociating fluoride to the second non‐coordinated BF3. This CT interaction stabilizes both the transition state and the product. The B?F σ‐bond cleavage of BF2ArF (ArF=3,5‐bis(trifluoromethyl)phenyl) and the B?Cl σ‐bond cleavage of BCl3 by 1 are accelerated by the participation of the second borane. The calculations predict that trans oxidative addition of SiF4 to 1 easily occurs in the presence of a second SiF4 molecule via the formation of a hypervalent Si species. 相似文献
23.
Applications of microelectromechanical systems (MEMS) technology are widespread in both industrial and research fields providing
miniaturized smart tools. In this review, we focus on MEMS applications aiming at manipulations and characterization of biomaterials
at the single molecule level. Four topics are discussed in detail to show the advantages and impact of MEMS tools for biomolecular
manipulations. They include the microthermodevice for rapid temperature alternation in real-time microscopic observation,
a microchannel with microelectrodes for isolating and immobilizing a DNA molecule, and microtweezers to manipulate a bundle
of DNA molecules directly for analyzing its conductivity. The feasibilities of each device have been shown by conducting specific
biological experiments. Therefore, the development of MEMS devices for single molecule analysis holds promise to overcome
the disadvantages of the conventional technique for biological experiments and acts as a powerful strategy in molecular biology.
Figure Towards single bio molecular handling and characterization by MEMS 相似文献
24.
Umakoshi K Kojima T Saito K Akatsu S Onishi M Ishizaka S Kitamura N Nakao Y Sakaki S Ozawa Y 《Inorganic chemistry》2008,47(12):5033-5035
The platinum dimer and heteropolynuclear platinum complexes of 3,5-dimethylpyrazolate, [Pt2M4(mu-Me2pz)8] [M = H (1), Ag (2), Cu (3)], were synthesized and structurally characterized. They exhibit yellow, sky-blue, and orange luminescence, respectively, in the solid state. The absorption bands of 2 and 3 are mainly assigned to the combination of the metal-metal-to-ligand charge-transfer and [Pt2 --> Pt2M4] transitions by the time-dependent density functional theory (DFT) method. DFT calculations also indicate that the emissive states of 2 and 3 are 3[Pt2 --> Pt2Ag4] and 3[Cu(d) --> Pt2Cu4], respectively. 相似文献
25.
Ming‐Shui Yao Jia‐Jia Zheng Ai‐Qian Wu Gang Xu Sanjog S. Nagarkar Gen Zhang Masahiko Tsujimoto Shigeyoshi Sakaki Satoshi Horike Kenichi Otake Susumu Kitagawa 《Angewandte Chemie (International ed. in English)》2020,59(1):172-176
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10?5 S cm?1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g?1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. 相似文献
26.
Matano Y Miyajima T Ochi N Nakabuchi T Shiro M Nakao Y Sakaki S Imahori H 《Journal of the American Chemical Society》2008,130(3):990-1002
The syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins (P,N2,X-hybrid calixphyrins) and the catalytic activities of their transition-metal complexes are reported. The 5,10-porphodimethene type 14pi-P,(NH)2,X- and 16pi-P,N2,X-hybrid calixphyrins (X = O, S, NH) are prepared via acid-promoted dehydrative condensation between a sigma4-phosphatripyrrane and the corresponding 2,5-bis[hydroxy(phenyl)methyl]heteroles followed by DDQ oxidation. Both spectroscopic and crystallographic data of the hybrid calixphyrins have revealed that the conformation and size of the macrocyclic platforms as well as the oxidation state of the -conjugated pyrrole-heterole-pyrrole (N-X-N) units vary considerably depending on the combination of heteroles. The sigma3-P,(NH)2,S- and sigma3-P,N2,S-hybrids react with Pd(OAc)2 and Pd(dba)2, respectively, to afford the same Pd(II)-P,N2,S-hybrid complex, in which the calixphyrin platform is regarded as a dianionic ligand. In the complexation with [RhCl(CO)2]2 in dichloromethane, the sigma3-P,N2,S-hybrid behaves as a neutral ligand to afford an ionic Rh(I)-P,N2,S-hybrid complex, whereas the sigma3-P,N2,NH-hybrid behaves as an anionic ligand to produce Rh(III)-P,N3-hybrid complexes. In the latter reaction, it is likely that a neutral Rh(I)-P,N3-hybrid complex, generated as a highly nucleophilic intermediate, undergoes C-Cl bond activation of the solvent. The complexation of AuCl(SMe2) with the sigma3-P,N2,X-hybrids (X = S, NH) leads to the formation of the corresponding Au(I)-monophosphine complexes. The spectral data and crystal structures of these metal complexes exhibit the hemilabile nature of the phosphole-containing hybrid calixphyrin platforms derived from the flexible phosphole unit and the redox active N-X-N units. The hybrid calixphyrin-palladium and -rhodium complexes catalyze the Heck reaction and hydrosilylations, respectively, implying that the metal center in the core is capable of activating the substrates under appropriate reaction conditions. The present results demonstrate the potential utility of the phosphole-containing hybrid calixphyrins as a new class of macrocyclic P,N2,X-mixed donor ligands for designing highly reactive transition-metal complexes. 相似文献
27.
Dr. Ming-Shui Yao Prof. Jia-Jia Zheng Ai-Qian Wu Prof. Gang Xu Sanjog S. Nagarkar Gen Zhang Masahiko Tsujimoto Prof. Shigeyoshi Sakaki Prof. Satoshi Horike Prof. Kenichi Otake Prof. Susumu Kitagawa 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(1):178-182
Single-ligand-based electronically conductive porous coordination polymers/metal–organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. 相似文献
28.
A new method to evaluate the weights of resonance structures from molecular orbital wave function is proposed, which is based on the second quantization of singlet-coupling. The present method is useful to analyze molecules of which the electronic structures are well localizable. The evaluation is carried out through localization of molecular orbitals followed by algebraic calculation of density matrices. This method is applied to H(2)O, H(3)O(+), and BH(3). The calculated weights of covalent and ionic structures are in excellent agreement with those of the previous works and our chemical intuition. 相似文献
29.
Four kinds of 3,5-dialkylpyrazolate(R2pz)-bridged dinuclear platinum(II) complexes [Pt2(mu-R2pz)2(dfppy)2] (dfppy=2-(2,4-difluorophenyl)pyridine; R2pz=pyrazolate in 1, 3,5-dimethylpyrazolate in 2, 3-methyl-5- tert-butylpyrazolate in 3, and 3,5-bis(tert-butyl)pyrazolate in 4) were theoretically investigated by the DFT(B3PW91) method. The Stokes shift of their phosphorescence spectra was discussed on the basis of the potential energy curve (PEC) of the lowest energy triplet excited state (T1). This PEC significantly depends on the bulkiness of substituents on pz. In 1 and 2, bearing small substituents on pz, one local minimum is present in the T1 state besides a global minimum. The local minimum geometry is similar to the S0-equilibrium one. The T1 state at this local minimum is characterized as the pi-pi* excited state in dfppy, where the dpi orbital of Pt participates in this excited state through an antibonding interaction with the pi orbital of dfppy; in other words, this triplet excited state is assigned as the mixture of the ligand-centered pi-pi* excited and metal-to-ligand charge transfer excited state ((3)LC/MLCT). The geometry of the T1-global minimum is considerably different from the S0-equilibrium one. The T1 state at the global minimum is characterized as the triplet metal-metal-to-ligand charge transfer ((3)MMLCT) excited state, which is formed by the one-electron excitation from the dsigma-dsigma antibonding orbital to the pi* orbital of dfppy. Because of the presence of the local minimum, the geometry change in the T1 state is suppressed in polystyrene at room temperature (RT) and frozen 2-methyltetrahydrofuran (2-MeTHF) at 77 K. As a result, the energy of phosphorescence is almost the same in these solvents. In fluid 2-MeTHF at RT, on the other hand, the geometry of the T1 state easily reaches the T1-global minimum. Because the T1-global minimum geometry is considerably different from the S0-equilibrium one, the phosphorescence occurs at considerably low energy. These are the reasons why the Stokes shift is very large in fluid 2-MeTHF but small in polystyrene and frozen 2-MeTHF. In 3 and 4, bearing bulky tert-butyl substituents on pz, only the T1-global minimum is present but the local minimum is not. The electronic structure of this T1-global minimum is assigned as the (3)MMLCT excited state like 1 and 2. Though frozen 2-MeTHF suppresses the geometry change of 3 and 4 in the T1 state, their geometries moderately change in polystyrene because of the absence of the T1-local minimum. As a result, the energy of phosphorescence is moderately lower in polystyrene than in frozen 2-MeTHF. The T1-global minimum geometry is much different from the S0-equilibrium one in 3 but moderately different in 4, which is interpreted in terms of the symmetries of these complexes and the steric repulsion between the tert-butyl group on pz and dfppy. Thus, the energy of phosphorescence of 3 is much lower in fluid 2-MeTHF than in frozen 2-MeTHF like 1 and 2 but that of 4 is moderately lower; in other words, the Stokes shift in fluid 2-MeTHF is small only in 4. 相似文献
30.
Coronene (C(24)H(12)) is a flat polyaromatic hydrocarbon consisting of seven peri-fused benzene rings and attracts lots of attention as a fragment of graphene. Using a hybrid method of quantum chemistry and statistical mechanics called RISM-SCF, which is an alternative to QM/MM, the electronic structure and solvation structure of a coronene-transition metal complex were computed in a self-consistent manner. The binding of a ruthenium complex ([C(5)H(5)Ru](+)) was extensively studied, especially the changing of the solvation structure. 相似文献