首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   10篇
  国内免费   1篇
化学   120篇
晶体学   2篇
力学   1篇
数学   7篇
物理学   42篇
  2023年   1篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   3篇
  2012年   11篇
  2011年   10篇
  2010年   3篇
  2009年   6篇
  2008年   9篇
  2007年   13篇
  2006年   14篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
141.
142.
Time-integrated and time-resolved photoluminescence spectra of neutral and negatively charged self-assembled InAs quantum dots (QDs) were studied. Obtained spectra have indicated that the redistribution of carriers in QDs occurs in all samples, but the temperature dependence of spectra are quite different for neutral and charged QDs. To clarify the origin of these behaviors, a model calculation based on two possible redistribution mechanisms has been carried out, and compared with experiments to show that the carrier tunneling between neighboring QDs is suppressed in charged QDs.  相似文献   
143.
Inelastic scattering processes of the two-dimensional electron gas (2DEG) in both normal and inverted n-AlGaAs/GaAs heterojunction FET structures have been studied, for the case where InGaAs dots are embedded in the vicinity of GaAs channel. By analyzing the magnetoresistance data, the inelastic scattering time τin is determined as a function of the concentration N2D of 2D electrons and shown to be reduced by 10–40% by the presence of InGaAs dots. By investigating a GaAs/n-AlGaAs inverted heterojunction FET with embedded InGaAs dots, we have varied the percentage Poc of charged dots filled with an electron and found that τin decreases as Poc increases, indicating that the inelastic scattering rate of 2DEG by charged dots is higher than that by the neutral ones.  相似文献   
144.
Enzymatic synthesis of trisaccharides from N-acetylsucrosamine and lactose utilizing the transgalactosylation activity of Aspergillus oryzae β-galactosidase provided two reaction products. Structure analyses by various 2D NMR spectroscopy and MS indicated that the products were β-D-fructofuranosyl β-D-galactopyranosyl-(1→6)-2-acetamido-2-deoxy-α-D-glucopyranoside and β-D-galactopyranosyl-(1→6)-β-D-fructofuranosyl-(2?1)-2-acetamido-2-deoxy-α-D-glucopyranoside. Moreover, J-resolved-HMBC experiments indicated that the conformations around the glycosidic bonds of these trisaccharides were very similar. Examination about the pH and thermal stabilities of the glycosidic bonds in the GlcNAc–Fru moiety of the two trisaccharides indicated apparent difference.  相似文献   
145.
The standard hydrogen electrode (SHE) potential in aqueous solution was evaluated with new computational procedure that provides the Gibbs energy of a proton in aqueous solution from the experimental pKa value and the Gibbs energy change by deprotonation reactions of several neutral alcohol molecules. With our computational scheme, the CCSD(T)/aug‐cc‐pVDZ method provides the SHE potential of 4.52 V, which is almost the same as the experimental SHE potential. This scheme also reproduces well the redox potentials of several typical reactions within almost 0.1 V. B3LYP also gives excellent redox potentials of the same reactions with almost the same accuracy with our new computational scheme. © 2012 Wiley Periodicals, Inc.  相似文献   
146.
147.
We have achieved by molecular-beam-epitaxy the new type of superlattice of InAs and GaSb whose energy gaps do not overlap. The observed Shubnikov-de Haas oscillations manifest the two-dimensional electronic subband structure, corroborating theoretical calculations. The deduced electron mass is enhanced primarily as a result of the strong nonparabolicity in the conduction-band of InAs.  相似文献   
148.
Sakaki T  Kitagawa S  Tsuda T 《Electrophoresis》2000,21(15):3088-3092
The instrumentation for miniaturization of capillary electrochromatography was devised and an injection method for this apparatus was proposed. By using an ultra short capillary column (15 mm packed length, 36 mm total length, 75 microm inner diameter, packed with cation exchange supports), the separation of five biochemical compounds was performed within 1 min. The high separation efficiency of 9780 plates was achieved by using an ultrashort capillary column. The miniaturized instrumentation for capillary electrochromatography might be utilized as one of the possible methods in microfabricated analysis or in an alternative approach to it.  相似文献   
149.
The title reaction was theoretically investigated, where cis-[RhH(2)(PH(3))(3)](+) and cis-[RhH(2)(PH(3))(2)(H(2)O)](+) were adopted as models of the catalyst. The first step of the catalytic cycle is the CO(2) insertion into the Rh(III)-H bond, of which the activation barrier (E(a)) is 47.2 and 28.4 kcal/mol in cis-[RhH(2)(PH(3))(3)](+) and cis-[RhH(2)(PH(3))(2)(H(2)O)](+), respectively, where DFT(B3LYP)-calculated E(a) values (kcal/mol unit) are given hereafter. These results indicate that an active species is not cis-[RhH(2)(PH(3))(3)](+) but cis-[RhH(2)(PH(3))(2)(H(2)O)](+). After the CO(2) insertion, two reaction courses are possible. In one course, the reaction proceeds through isomerization (E(a) = 2.8) of [RhH(eta(1)- OCOH)(PH(3))(2)(H(2)O)(2)](+), five-centered H-OCOH reductive elimination (E(a) = 2.7), and oxidative addition of H(2) to [Rh(PH(3))(2)(H(2)O)(2)](+) (E(a) = 5.8). In the other one, the reaction proceeds through isomerization of [RhH(eta(1)-OCOH)(PH(3))(2)(H(2)O)(H(2))](+) (E(a) = 5.9) and six-centered sigma-bond metathesis of [RhH(eta(1)-OCOH)(PH(3))(2)(H(2)O)](+) with H(2) (no barrier). RhH(PH(3))(2)-catalyzed hydrogenation of CO(2) proceeds through CO(2) insertion (E(a) = 1.6) and either the isomerization of Rh(eta(1)-OCOH)(PH(3))(2)(H(2)) (E(a) = 6.1) followed by the six-centered sigma-bond metathesis (E(a) = 0.3) or H(2) oxidative addition to Rh(eta(1)-OCOH)(PH(3))(2) (E(a) = 7.3) followed by isomerization of RhH(2)(eta(1)-OCOH)(PH(3))(2) (E(a) = 6.2) and the five-centered H-OCOH reductive elimination (E(a) = 1.9). From these results and our previous results of RuH(2)(PH(3))(4)-catalyzed hydrogenation of CO(2) (J. Am. Chem. Soc. 2000, 122, 3867), detailed discussion is presented concerning differences among Rh(III), Rh(I), and Ru(II) complexes.  相似文献   
150.
Iridium-catalyzed borylation of benzene with diboron was theoretically investigated with the DFT method, where an iridium(I) boryl complex, Ir(Beg)(NN) 1, and an iridium(III) tris(boryl) complex, Ir(Beg)(3)(NN) 14, (eg (ethyleneglycolato) = -OCH(2)CH(2)O-, NN = HN=CHCH=NH (diim) or 2,2'-bipyridine (bpy)) were adopted as models of active species and B(2)(eg)(2) was adopted as a model of bis(pinacolato)diboron (pinacolato = -OCMe(2)CMe(2)O-). Oxidative addition of a benzene C-H sigma-bond to 1 takes place with an activation barrier (E(a)) of 11.2 kcal/mol, followed by reductive elimination of phenylborane, Ph-Beg, from Ir(Beg)(H)(Ph)(diim) with an activation barrier of 15.6 kcal/mol. Though the oxidative addition and the reductive elimination occur with moderate activation barriers, B(2)(eg)(2) much more easily reacts with 1 to afford 14 than does benzene, of which the activation barrier is very small (2.9 kcal/mol). Oxidative addition of the benzene C-H sigma-bond to 14 occurs with a moderate activation barrier of 24.2 kcal/mol to afford an unusual seven-coordinate iridium(V) complex, Ir(H)(Ph)(Beg)(3)(bpy) 16. From this complex, phenylborane Ph-Beg is produced through the reductive elimination with concomitant formation of IrH(Beg)(2)(bpy) 17, where the activation barrier is 4.9 kcal/mol. Complex 17 further reacts with diboron to form Ir(H)(Beg)(4)(bpy) (E(a) = 8.0 kcal/mol), followed by the reductive elimination of borane H-Beg (E(a) = 2.6 kcal/mol) to regenerate Ir(Beg)(3)(bpy), when diboron exists in excess in the reaction solution. After consumption of diboron, IrH(Beg)(2)(bpy) reacts with borane, H-Beg, to form Ir(H)(2)(Beg)(3) (E(a) = 21.3 kcal/mol) followed by the reductive elimination of H(2), to regenerate Ir(Beg)(3)(bpy) with concomitant formation of H(2). Formation of the iridium(III) tris(boryl) complex 14 from IrCl(diim) and diboron was also theoretically investigated; IrCl(diim) undergoes two steps of oxidative addition of diboron to afford a seven-coordinate iridium(V) complex, IrCl(Beg)(4)(NN), from which the reductive elimination of Cl-Beg takes place easily to afford 14. From these results, it should be clearly concluded that the iridium(III) tris(boryl) complex is an active species and an unusual iridium(V) species is involved as a key intermediate in the reaction. Detailed discussion is presented on the full catalytic cycle and the importance of a seven-coordinate iridium(V) intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号