首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   19篇
  国内免费   6篇
化学   520篇
晶体学   12篇
力学   71篇
数学   105篇
物理学   291篇
  2023年   8篇
  2022年   15篇
  2021年   16篇
  2020年   16篇
  2019年   15篇
  2018年   15篇
  2017年   18篇
  2016年   20篇
  2015年   18篇
  2014年   32篇
  2013年   62篇
  2012年   59篇
  2011年   56篇
  2010年   37篇
  2009年   42篇
  2008年   50篇
  2007年   38篇
  2006年   33篇
  2005年   33篇
  2004年   26篇
  2003年   24篇
  2002年   21篇
  2001年   9篇
  2000年   11篇
  1999年   14篇
  1998年   6篇
  1996年   11篇
  1995年   14篇
  1994年   9篇
  1993年   12篇
  1992年   7篇
  1991年   11篇
  1990年   9篇
  1989年   13篇
  1988年   8篇
  1986年   6篇
  1984年   14篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1980年   6篇
  1979年   13篇
  1978年   7篇
  1977年   6篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1963年   5篇
  1961年   5篇
  1936年   13篇
排序方式: 共有999条查询结果,搜索用时 15 毫秒
51.
Stable homogeneous amorphous alloy1 films of Ge with different concentrations of Al, Cu and Fe have been prepared by the simultaneous vapor deposition technique. Ge-Metal films are amorphous up to a concentration of ~ 40 at.% Al, ~ 20 at.% Cu and ~ 20 at.% Fe. The cyclic annealing and crystallization temperature of these films show that whereas Al increases the stability of the amorphous phase, the addition of Cu and Fe decreases it. The electrical resistivity decreases gradually with increasing Al content. In contrast, a rapid decrease in the electrical resistivity is observed for the Ge-Cu and Ge-Fe systems. The thermoelectric power (TEP) of Ge-Cu and Ge-Fe system assumes small values ~ few μV/deg for concentrations greater than few atomic percent. Ge-Al system exhibits large positive thermoelectric power at all compositions. The temperature dependence of the electrical resistivity of these alloy films show that the addition of Cu and Fe to Ge results in a drastic decrease in the activation energy of conduction whereas the addition of Al increases the activation energy. Ge-Al films exhibit intrinsic like conduction in the temperature range 100–300 K. The Ge-Cu and Ge-Fe films exhibit hopping conduction from 100–300 K and the related density of states is up to 100 times larger than in pure a-Ge films.  相似文献   
52.
Viscosity behaviour of several samples ofGraham's salt with varying molecular weight has been studied. Reduced viscosity (η sp /c) versus concentration curves were found to be characteristic of polyelectrolytes. They are dependent on the molecular weight and can be reduced to straight lines by plotting the reciprocal of the reduced viscosity against the square root of concentration. The intrinsic viscosities obtained by extrapolation were found to be proportional to the square of molecular weights. The value of reduced viscosity at any particular concentration in the concentration range between 0.25% and 4.0% was linearly related to the molecular weight. Reduced viscosities were found to decrease considerably on addition of electrolytes. Reduced viscosity versus added salt concentration curves were remarkably molecular weight dependent. The pH of the medium seemed to have no effect at all. Bivalent salts reduce the viscosity to a much greater extent than monovalent ones. By keeping the concentration of the added salt constant and varying that ofGraham's salt, curves showing hump which disappeared at higher concentration of the added salt, were obtained. In the action of electrolytes the more important factor is the valency of cation rather than the ionic strength of the medium. Most observations confirm the already well-establishedFolding-Chain Theory of polyelectrolytes developed byKatchalsky, Fuoss and others.  相似文献   
53.
The optimized molecular structures, harmonic vibrational wavenumbers, and the corresponding vibrational assignments of (1S,2S)-tramadol and (1R,2R)-tramadol are computationally examined using the B3LYP density functional theory method together with the standard 6–311++G(d,p) and def2-TVZP basis sets. The optimized structures show that phenolic rings of both 1R,2R and 1S,2S tramadol adopt planar geometry, which are slightly distorted due to the substitution at the meta-position; and the six-membered cyclohexane adopts a slightly distorted chair conformation. The 1S,2S enantiomer is energetically more favorable than 1R,2R with the energy differences of 1.32 and 1.03 kcal/mol obtained at B3LYP/6–311++G(d,p) and B3LYP/Def2-TVZP levels, respectively. The analysis of the binding pocket in the silico molecular docking with the m-opioid receptor shows that it originated two clusters with the 1S,2S enantiomer and one cluster with the 1R,2R enantiomer of tramadol. The results point to a more stable complex of the m-opioid receptor with the 1R,2R enantiomer of tramadol.  相似文献   
54.
We report synthesis of ZnS quantum dots by chemical method at room temperature. In this technique, ZnS quantum dots are produced by simple chemical reactions where zeolite, acts as matrix, plays the key role in controlling particle growth during synthesis. Quantum dots exhibit luminescence properties such as Zn2+ related emission, efficient low voltage electroluminescence, and super linear voltage-brightness EL characteristics. This study demonstrates the technological importance of semiconductor nanosystems prepared by low cost chemical route.  相似文献   
55.
Inorganic enzyme? Ceria nanoparticles exhibit unique oxidase‐like activity at acidic pH values. These redox catalysts can be used in immunoassays (ELISA) when modified with targeting ligands (see picture; light blue and yellow structures are nanoparticles with attached ligands). This modification allows both for binding and for detection by the catalytic oxidation of sensitive colorimetric dyes (e.g. TMB).

  相似文献   

56.
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.  相似文献   
57.
Ultrafast photoinduced bimolecular electron transfer (ET) dynamics between 7-aminocoumarin derivatives and N,N-dimethylaniline (DMAN) has been studied in neutral (TX100), cationic (DTAB) and anionic (SDS) micellar media. A very fast decay time constant (tau(fast)) shorter than approximately 10 ps has been observed for the coumarins in the presence of DMAN in all of the three micellar media. In this time scale, reactants in the micellar phase undergo ET interactions without involving diffusion or reorientation of the reactants and thus can be envisaged as equivalent to nondiffusive bimolecular ET reaction. The fastest ET rates estimated as the inverse of the shortest lifetime components of the fluorescence decay (k(et) congruent with tau(fast)(-1)) nicely follow the predicted Marcus inversion behavior with reaction exergonicity (-DeltaG degrees), irrespective of the nature of micelles considered. Onset of inversion in ET rates occur at approximately 0.61 eV lower exergonicity in SDS and TX100 micelles compared with that in DTAB micelle and are rationalized following two-dimensional ET (2DET) theory. These differences suggest the possibility of tuning Marcus inversion by proper selection of micelles. Interestingly, ET rates (k'(et)) obtained from the conventional Stern-Volmer analysis of the relatively longer time constants of the fluorescence decays also exhibit similar Marcus correlation with DeltaG degrees, showing clear inversion behavior. Fitting of Marcus correlation curves for k(et) and k'(et) indicate two largely different values for the electronic coupling parameters. In micellar media, as the interacting donor-acceptor molecules are on an average expected to be separated by an intervening surfactant chain and the reorientation rate of the reactants is quite slow, it is predicted that the ultrafast ET (k(et)) component arises because of the surfactant separated donor-acceptor pairs that are orientated perfectly to give the maximum electronic coupling. The slower ET (k'(et)) is predicted to arise because of those pairs where the donor-acceptor orientations are not very suitable but good enough to give a sizable electronic coupling.  相似文献   
58.
Low concentrations of bromine (0.008–0.06M) were used to initiate photopolymerization of MMA in bulk and in diluted (near bulk) systems, the diluents or solvents used being benzene, toluene, dioxane, tetrahydrofuran, carbon tetrachloride, chloroform, methylene chloride, and methanol. Polymerization in bulk follows usual free-radical kinetics. Inert solvents (benzene, toluene) as well as the other solvents used enhance the rate of polymerization MMA even when used in the range of catalytic concentrations (0.04–0.4M). An initiation mechanism involving solvent molecules appears to be predominant in diluted systems.  相似文献   
59.
We have shown solvent- and substrate-dependent chiral inversion of a few glycoconjugate supramolecules. (Z)-F-Gluco, in which d -glucosamine has been attached chemically to Cbz-protected l -phenylalanine at the C terminus, forms a self-healing hydrogel through intertwining of the nanofibers wherein the gelators undergo lamellar packing in the β-sheet secondary structures with a single chiral handedness. Dihybrid (Z)-F-gluco nanocomposite gel was prepared by in-situ formation of silver nanoparticles AgNPs in the gel; this enhances the mechanical properties of the composite gel through physical crosslinking without altering the packing pattern. In contrast, (Z)-L-gluco bearing an l -leucine moiety does not form a hydrogel but an organogel. Interestingly, the chiral handedness of the aggregates of (Z)-L-gluco can be reversed by choosing suitable solvents. In addition to self-healing behavior, (Z)-L-gluco gel revealed shape persistency. Further, (Z)-F-gluco hydrogel is benign, nontoxic, non-immunogenic, and non-allergenic in animal cells. AgNP-loaded (Z)-F-gluco hydrogel showed antibacterial activity against both Gram-positive and Gram-negative bacteria.  相似文献   
60.
The degradation of neurotransmitters is a hallmark feature of Alzheimer''s disease (AD). Copper bound Aβ peptides, invoked to be involved in the pathology of AD, are found to catalyze the oxidation of serotonin (5-HT) by H2O2. A combination of EPR and resonance Raman spectroscopy reveals the formation of a Cu(ii)–OOH species and a dimeric, EPR silent, Cu2O2 bis-μ-oxo species under the reaction conditions. The Cu(ii)–OOH species, which can be selectively formed in the presence of excess H2O2, is the reactive intermediate responsible for 5-HT oxidation. H2O2 produced by the reaction of O2 with reduced Cu(i)–Aβ species can also oxidize 5-HT. Both these pathways are physiologically relevant and may be involved in the observed decay of neurotransmitters as observed in AD patients.

The mononuclear copper hydroperoxo species (Cu(ii)–OOH) of Cu–Aβ is the active oxidant responsible for serotonin oxidation by Cu–Aβ in the presence of physiologically relevant oxidants like O2 and H2O2, which can potentially cause oxidative degradation of neurotransmitters, a marker of Alzheimer''s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号