首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   21篇
  国内免费   7篇
化学   164篇
晶体学   5篇
力学   11篇
数学   24篇
物理学   75篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   17篇
  2013年   22篇
  2012年   16篇
  2011年   18篇
  2010年   11篇
  2009年   7篇
  2008年   15篇
  2007年   6篇
  2006年   22篇
  2005年   11篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   8篇
  2000年   15篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   10篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1977年   2篇
  1976年   2篇
  1966年   1篇
排序方式: 共有279条查询结果,搜索用时 31 毫秒
131.
The desorption characteristics of methane from a Maxsorb II specimen of activated carbon were measured over the temperature range of 281?C343?K and at pressures up to 1.2?MPa. The technique of measuring the dead volume in the measurement system using helium calibration has also been perfected. The desorption data were fitted to two isotherm models proposed by Tóth and Dubinin?CAstakhov with an accuracy better than 0.004?g?g?1. The data are compared with those from adsorption and correlations are developed by combining the adsorption and desorption data. The Henry??s law coefficients and their relations with extrapolated isosteric heat of adsorption at saturation are analyzed.  相似文献   
132.
A homologous series of polyhydroxylated poly(p-phenylene)s with different alkoxy groups (C6PPPOH, C12PPPOH, and C18PPPOH) were synthesized with use of the Suzuki polycondensation reaction. Comparative studies of the structure correlation between their photophysical properties and film morphology is described. The absorption and emission spectra of polymers in solution and thin films showed similar features indicating that the electronic properties in solution were retained in the film state. Compared to the polymer with the short alkoxy chains (C6PPPOH), the polymers with long alkoxy groups (C12PPPOH and C18PPPOH) showed improved film forming properties with continuous and smooth film morphology. The absorption properties of the C12PPPOH showed an enhanced effective conjugation length and high quantum yield implying planarization of the backbone through alkoxy chain packing (C12H25O-) and potential hydrogen bonds. No overlap in the absorption and emission spectra was observed, which indicated minimized excimer formation or excitation energy transfer in the films. Time-resolved fluorescence measurements showed that the decay times increased from 43 ps (C6PPPOH) to 78 ps (C12PPPOH) and 99 ps (C18PPPOH). Electrochemical studies were performed for all polymers and the observed oxidation potential for C6PPPOH was higher than that of C12PPPOH and C18PPPOH. In addition, the C12PPPOH has the lowest band gap of DeltaE = 2.59 eV when compared to the 3.1 (C6PPPOH) and 2.61 eV (C18PPPOH) gaps. The optical band gaps estimated from the absorption onset of the polymers are significantly higher than those obtained from electrochemical data. C12PPPOH was chosen for investigating the charge carrier mobility by the time-of-flight (TOF) technique. The observed results also showed negative field dependent values of the drift mobility for the polymer C12PPPOH.  相似文献   
133.
We report white light emission from a Ga-doped ZnO/p-GaN heterojunction light-emitting diode which was fabricated by growing gallium-doped ZnO film on the p-GaN in water at 90°C. As determined from Ga-doped ZnO films grown on (111) oriented MgAl2O4 spinel single crystal substrates, thermal treatment at 600°C in nitrogen ambient leads to a carrier concentration of 3.1×1020 cm−3 (and carrier mobility of 28 cm2/Vs) which is two orders of magnitude higher than that of the undoped films. Electroluminescence emissions at wavelengths of 393 nm (3.155 eV) and 529.5 nm (2.4 eV) were observed under forward bias in the heterojunction diode and white light could be visibly observed. The high concentration of electrons supplied from the Ga-doped ZnO films helped to enhance the carrier recombination and increase the light-emitting efficiency of the heterojunction diode.  相似文献   
134.
In this study, we report growth and characterization of GaN layers on (1 0 0)- and (1 1 1)-oriented silicon-on-insulator (SOI) substrates. Using metalorganic chemical vapor deposition (MOCVD) technique, GaN layers are grown on KOH treated Si (1 0 0) overlayers of thin SIMOX SOI substrates. Growth of GaN on such surface with an AlN buffer leads to c-axis orientated textured GaN. This is evident from high-resolution X-ray diffraction (HRXRD) measurement, which shows a much broader rocking curve linewidth. Significantly enhanced photoluminescence (PL) intensity and partial stress relaxation is observed in GaN layers grown on these SOI substrates. Furthermore, GaN grown on (1 1 1)-oriented bonded SOI substrates shows good surface morphology and improved optical quality. Micro-Raman, micro-PL, and HRXRD measurements reveal single crystalline hexagonal GaN oriented along (0 0 0 1) direction. We also report growth and characterization of InGaN/GaN multi-quantum well structures on (1 1 1)-oriented bonded SOI. Such an approach to realize nitride epilayers would be useful to fabricate GaN-based micro-opto-electromechanical systems (MOEMS) and sensors.  相似文献   
135.
Biosorption of heavy metals by bacteria isolated from activated sludge   总被引:1,自引:0,他引:1  
Twelve aerobic bacteria from activated sludge were isolated and identified. These included both Gram-positive (e.g., Bacillus) and Gram-negative (e.g., Pseudomonas) bacteria. The biosorption capacity of these strains for three different heavy metals (copper, nickel, and lead) was determined at pH 5.0 and initial metal concentration of 100 mg/L. Among these 12 isolates, Pseudomonas pseudoalcaligenes was selected for further investigation owing to its high metal biosorption capacity. The lead and copper biosorption of this strain followed the Langmuir isotherm model quite well with maximum biosorption capacity (q max) reaching 271.7mg of Pb2+/g of dry cell and 46.8 mg of Cu2+/g of dry cell at pH 5.0. Study of the effect of pH on lead and copper removal indicated that the metal biosorption increased with increasing pH from 2.0 to 7.0. A mutual inhibitory effect was observed in the lead-copper system because the presence of either ion affected the sorption capacity of the other. Unequal inhibitions were observed in all the nickel binary systems. The increasing order of affinity of the three metals toward P. pseudoalcaligenes was Ni<Cu<Pb. The metal biosorptive potential of these isolates, especially P. pseudoalcaligenes, may have possible applications in the removal and recovery of metals from industrial effluents.  相似文献   
136.
Alkali metal hydroxide and hydride composite systems contain both protic(H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation increased with the increase of atomic number of alkali metals,i.e.,-23 kJ/molH2 for LiOH-LiH, 55.34 kJ/molH2 for NaOH-NaH and 222 kJ/molH2 for KOH-KH. These thermodynamic calculation results were consistent with our experimental results. H2 was released from LiOH-LiH system during ball milling. The dehydrogenation temperature of NaOH-NaH system was about 150℃; whereas KOH and KH did not interact with each other during the heating process. Instead, KH decomposed by itself. In these three systems, NaOH-NaH was the only reversible hydrogen storage system, the enthalpy of dehydrogenation was about 55.65 kJ/molH2, and the corresponding entropy was ca. 101.23 J/(molH2 K), so the temperature for releasing 1.0 bar H2 was as high as 518℃, showing unfavorable thermodynamic properties. The activation energy for hydrogen desorption of NaOH-NaH was found to be57.87 kJ/mol, showing good kinetic properties.  相似文献   
137.
Graphene oxide (GO)‐based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen‐containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen‐containing groups on GO. Herein, we suggest a direct solution to the long‐standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free‐radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on “classical” GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X‐ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single‐nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron‐transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the electrode surface and improved the performance of graphene as a biosensor in comparison to GO. The proposed material can be used as a universal platform for biomolecule immobilization to facilitate rapid and sensitive detection of DNA or proteins for point‐of‐care investigations. Such reactive carboxyl groups grafted perpendicularly on GO holds promise for a highly efficient tailored biofunctionalization for applications in biosensing or drug delivery.  相似文献   
138.
Human mesenchymal stem cells (MSCs) derived from various origins show varied differentiation capability. Recent work shows that cell shape manipulation via micropatterning can modulate the differentiation of bone‐marrow‐derived MSCs. Herein, the effect of micropatterning on the myogenesis of MSCs isolated from three different sources (bone marrow, fetal tissue, and adipose) is reported. All the well‐aligned cells, regardless of source, predominantly commit to myogenic lineage, as shown by the significant upregulation of myogenic gene markers and positive myosin heavy chain staining. It is demonstrated that our novel micropattern can be used as a generic platform for inducing myogenesis of MSCs from different sources and may also have the potential to be extended to induce other lineage commitment.

  相似文献   

139.
We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy.  相似文献   
140.
Diabetes mellitus is a chronic metabolic disease involving the failure to regulate glucose blood levels in the body and has been linked with numerous detrimental complications. Studies have shown that these complications can be linked to the activities of aldose reductase (AR), an enzyme of the polyol pathway. Flavonoids have been identified as good AR inhibitors (ARIs) and are also strong antioxidants with radical scavenging (RS) activity. As such, flavonoids show potential to become a better class of ARIs because they are able to concurrently address the oxidative stress issue. In this article, we carried out quantitative structure‐activity relationship analysis of flavones and flavonols (members of flavonoid family) using artificial neural networks. Three computer experiments were conducted to study the influence of hydrogen (H), hydroxyl (? OH), and methoxyl (? CH3) functional groups on eight substitution sites of the lead flavone molecule and to predict potential ARIs. Of 6561 possible flavones and flavonols, in experiment 1, we predicted 69 potent ARIs, and in experiment 2, we predicted 346 compounds with strong RS activity. In experiment 3, we combined these results to find overlapping compounds with both strong AR inhibition and RS activity and we are able to predict 10 potent compounds with strong AR inhibition (IC50 < 0.3 μM) and RS activity (IC25 < 1.0 μM). These 10 compounds show promise of being good therapeutic agents in the prevention of diabetic complications and is suggested to undergo further wet bench experimentation to prove their potency. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号