首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   17篇
化学   213篇
晶体学   2篇
力学   11篇
数学   31篇
物理学   66篇
  2023年   4篇
  2022年   3篇
  2021年   4篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   9篇
  2015年   7篇
  2014年   4篇
  2013年   10篇
  2012年   22篇
  2011年   16篇
  2010年   6篇
  2009年   14篇
  2008年   27篇
  2007年   16篇
  2006年   13篇
  2005年   24篇
  2004年   12篇
  2003年   17篇
  2002年   13篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1985年   6篇
  1984年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1965年   1篇
  1964年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有323条查询结果,搜索用时 296 毫秒
91.
92.
93.
94.
Aliphatic and aromatic sulfonamides were alkynylated with 1-bromo-1-alkynes in the catalytic presence of CuI to give N-(1-alkynyl)sulfonamides in good to excellent yields. The acetylene-titanium complexes generated from N-(1-alkynyl)benzosultams underwent diastereoselective addition to aldehydes. [reaction: see text]  相似文献   
95.
The amination of aryl halides in the presence of inexpensive and air-stable alkali metal hydroxide bases and Pd[P(t-Bu)3]2 as catalyst gave arylamines in high yields. The reactions were conducted with a catalytic amount of cetyltrimethylammonium bromide as phase-transfer agent and either aqueous hydroxide or solid hydroxide in the presence of water. This combination of alkali metal hydroxide base, H2O, and the ammonium salt performed as well as NaO-t-Bu in the amination of p-chlorotoluene with dibutylamine. Hydroxide base was suitable for reactions of a wide range of aryl chlorides and bromides with aliphatic and aromatic amines. Some functional groups that were intolerant of tert-butoxide base, such as esters, enolizable ketones, nitriles, and nitro groups, were tolerated by the combination of hydroxide base, H2O, and cetyltrimethylammonium bromide in toluene solvent.  相似文献   
96.
We investigated the application of alkylamines, as additives to the mobile phase, to a quantification method for the metabolites, M-III and M-IV, of TAK-778, which is a new bone anabolic agent, in human serum using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Prior to setting up the analytical method, we found that 1-alkylamines co-existing with M-III and M-IV in the turbo ionsprayed solution formed 1-alkylammonium adduct molecules of these metabolites during the ionization process, and the abundance of the adduct ions was considerably higher than that of protonated molecules ([M + H](+)s) of these metabolites. Based on these findings, we investigated a variety of 1-alkylamines and their spiked concentrations in the mobile phase for LC/MS/MS analysis to obtain higher sensitivities for the quantification of these metabolites. After these examinations, we found that 1-hexylamine at a final concentration of 0.05 mmol l(-1) was the most suitable additive for the mobile phase, and set the selected reaction monitoring (SRM) ions for the 1-hexylammonium adduct molecule and [M + H](+), allowing about a fivefold gain in the SRM chromatographic peak compared with that without 1-hexylamine. The adduct ion was considered to be formed by interaction between the amino group of 1-hexylamine and the phosphoryl group of M-III and M-IV. The internal standard (I.S.) used was deuterated M-III for each metabolite. The analytes and I.S. were extracted with diethyl ether from serum samples at neutral pH and injected into the LC/MS/MS system with a turbo ionspray interface. The limit of quantification for both analytes was 0.5 ng ml(-1) when 0.1 ml of serum was used, and the calibration curves were linear in the range 0.5-100 ng ml(-1). The method was precise; the intra- and inter-day precisions of the method were not more than 5.6%. The accuracy of the method was good, with deviations between added and calculated concentrations of M-III and M-IV being typically within 16.6%. This method provided reliable pharmacokinetic data for M-III and M-IV after the intramuscular administration of TAK-778 sustained-release formulation in humans.  相似文献   
97.
The iridium catalyst [IrCl(cod)]2–phosphine–I2 (cod=1,5‐cyclooctadiene) selectively reduced isoxazolium triflates to isoxazolines or isoxazolidines in the presence of H2. The iridium‐catalyzed hydrogenation proceeded in high‐to‐good enantioselectivity when an optically active phosphine–oxazoline ligand was used. The 3‐substituted 5‐arylisoxazolium salts were transformed into 4‐isoxazolines with up to 95:5 enantiomeric ratio (e.r.). Chiral cis‐isoxazolidines were obtained in up to 89:11 e.r., with no formation of their trans isomers, when the substrates had a primary alkyl substituent at the 5‐position. The mechanistic studies indicate that the hydridoiridium(III) species prefers to deliver its hydride to the C5 atom of the isoxazole ring. The hydride attack leads to the formation of the chiral isoxazolidine via a 3‐isoxazoline intermediate. Meanwhile, in the selective formation of 4‐isoxazolines, hydride attack at the C5 atom may be obstructed by steric hindrance from the 5‐aryl substituent.  相似文献   
98.
Novel electro‐conductive and mechanically‐tough double network polymer hydrogels (E‐DN gels) were synthesized by polymerization of 3, 4‐ethylenedioxythiophene in the presence of a double network hydrogel (DN gel) matrix. The E‐DN gels showed not only excellent mechanical performance, having a fracture stress of 1.4–2.1 MPa, but also electrical conductivity as high as 10?3 S cm?1, both under dry and water‐swollen states. The fracture stress and fracture energy of the E‐DN gel was increased by 1.7 and 3.4 times, respectively, as compared with the DN gel. From scanning electron microscope and AFM observations, it was found that electro‐conductive poly(3,4‐ethylenedioxythiophene) (PEDOT) was incorporated into DN gel matrix, apparently due to the formation of a poly‐ion complex with sulfonic acid group of the DN gel network. Thus, PEDOT incorporated into the DN gel matrix greatly improves not only electronic conductivity, but also mechanical properties, reinforcing the double network gel matrix. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
99.
Here, we report on the first electrochemical study that reveals the kinetics and molecular level mechanism of heterogeneous ion-ionophore recognition at plasticized polymer membrane/water interfaces. The new kinetic data provide greater understanding of this important ion-transfer (IT) process, which determines various dynamic characteristics of the current technologies that enable highly selective ion sensing and separation. The theoretical assessment of the reliable voltammetric data confirms that the dynamics of the ionophore-facilitated IT follows the one-step electrochemical (E) mechanism controlled by ion-ionophore complexation at the very interface in contrast to the thermodynamically equivalent two-step electrochemical-chemical (EC) mechanism based on the simple transfer of an aqueous ion followed by its complexation in the bulk membrane. Specifically, cyclic voltammograms of Ag(+), K(+), Ca(2+), Ba(2+), and Pb(2+) transfers facilitated by highly selective ionophores are measured and analyzed numerically using the E mechanism to obtain standard IT rate constants in the range of 10(-2) to 10(-3) cm/s at both plasticized poly(vinyl chloride) membrane/water and 1,2-dichloroethane/water interfaces. We demonstrate that these strongly facilitated IT processes are too fast to be ascribed to the EC mechanism. Moreover, the little effect of the viscosity of nonaqueous media on the IT kinetics excludes the EC mechanism, where the kinetics of simple IT is viscosity-dependent. Finally, we employ molecular level models for the E mechanism to propose three-dimensional ion-ionophore complexation at the two-dimensional interface as the unique kinetic requirement for the thermodynamically facilitated IT.  相似文献   
100.
Steric selectivity in terms of molecular planarity of cationic dyes was investigated using anionic bilayer aggregates. Planar cationic dye (para-type stilbazolium) could be incorporated into the hydrophobic region of anionic crystalline bilayer aggregates, whereas structurally related, less planar dyes (ortho-type stilbazolium) could not be incorporated in spite of somewhat higher hydrophobicity resulting from lengthening of the N-alkyl group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号