首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2501篇
  免费   110篇
  国内免费   10篇
化学   1918篇
晶体学   10篇
力学   51篇
数学   280篇
物理学   362篇
  2023年   40篇
  2022年   41篇
  2021年   62篇
  2020年   106篇
  2019年   88篇
  2018年   59篇
  2017年   37篇
  2016年   92篇
  2015年   64篇
  2014年   75篇
  2013年   116篇
  2012年   203篇
  2011年   270篇
  2010年   96篇
  2009年   79篇
  2008年   159篇
  2007年   144篇
  2006年   153篇
  2005年   97篇
  2004年   94篇
  2003年   77篇
  2002年   54篇
  2001年   16篇
  2000年   32篇
  1999年   12篇
  1998年   17篇
  1997年   7篇
  1996年   19篇
  1995年   9篇
  1994年   12篇
  1993年   26篇
  1992年   22篇
  1991年   14篇
  1990年   15篇
  1989年   13篇
  1988年   18篇
  1987年   13篇
  1986年   17篇
  1985年   16篇
  1984年   16篇
  1983年   10篇
  1982年   11篇
  1981年   7篇
  1980年   8篇
  1979年   7篇
  1976年   7篇
  1975年   9篇
  1973年   10篇
  1968年   7篇
  1966年   6篇
排序方式: 共有2621条查询结果,搜索用时 15 毫秒
101.
We report on the combination of nanodroplet sample preparation, ultra-low-flow nanoLC, high-field asymmetric ion mobility spectrometry (FAIMS), and the latest-generation Orbitrap Eclipse Tribrid mass spectrometer for greatly improved single-cell proteome profiling. FAIMS effectively filtered out singly charged ions for more effective MS analysis of multiply charged peptides, resulting in an average of 1056 protein groups identified from single HeLa cells without MS1-level feature matching. This is 2.3 times more identifications than without FAIMS and a far greater level of proteome coverage for single mammalian cells than has been previously reported for a label-free study. Differential analysis of single microdissected motor neurons and interneurons from human spinal tissue indicated a similar level of proteome coverage, and the two subpopulations of cells were readily differentiated based on single-cell label-free quantification.

The combination of nanodroplet sample preparation, ultra-low-flow nanoLC, high-field asymmetric ion mobility spectrometry (FAIMS) and latest-generation mass spectrometry instrumentation provides dramatically improved single-cell proteome profiling.  相似文献   
102.
We report on a unique DNA aptamer, denoted MSA52, that displays universally high affinity for the spike proteins of wildtype SARS-CoV-2 as well as the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. Using an aptamer pool produced from round 13 of selection against the S1 domain of the wildtype spike protein, we carried out one-round SELEX experiments using five different trimeric spike proteins from variants, followed by high-throughput sequencing and sequence alignment analysis of aptamers that formed complexes with all proteins. A previously unidentified aptamer, MSA52, showed Kd values ranging from 2 to 10 nM for all variant spike proteins, and also bound similarly to variants not present in the reselection experiments. This aptamer also recognized pseudotyped lentiviruses (PL) expressing eight different spike proteins of SARS-CoV-2 with Kd values between 20 and 50 pM, and was integrated into a simple colorimetric assay for detection of multiple PL variants. This discovery provides evidence that aptamers can be generated with high affinity to multiple variants of a single protein, including emerging variants, making it well-suited for molecular recognition of rapidly evolving targets such as those found in SARS-CoV-2.  相似文献   
103.
While momentum transfer from active particles to their immediate surroundings has been studied for both synthetic and biological micron‐scale systems, a similar phenomenon was presumed unlikely to exist at smaller length scales due to the dominance of viscosity in the ultralow Reynolds number regime. Using diffusion NMR spectroscopy, we studied the motion of two passive tracers—tetramethylsilane and benzene—dissolved in an organic solution of active Grubbs catalyst. Significant enhancements in diffusion were observed for both the tracers and the catalyst as a function of reaction rate. A similar behavior was also observed for the enzyme urease in aqueous solution. Surprisingly, momentum transfer at the molecular scale closely resembles that reported for microscale systems and appears to be independent of swimming mechanism. Our work provides new insight into the role of active particles on advection and mixing at the Ångström scale.  相似文献   
104.
The intramolecular and long-range ferromagnetic coupling between p-phenylenediamine radical cations in head-to-tail coupled oligo(1, 4-phenyleneethynylene)s and oligo(1,4-phenylenvinylene)s between neighbors and next-nearest neighbors is described. UV/vis/near-IR experiments show that the radical cations are localized in the pendant p-phenylenediamine units of the conjugated oligomers. The ESR spectra of these oligo(1,4-phenyleneethynylene) and oligo(1, 4-phenylenvinylene) di(radical cation)s are consistent with those of a triplet state. A linear behavior is observed for the doubly integrated ESR intensity of the DeltaM(s) = +/-1 and DeltaM(s) = +/-2 signals with the inverse temperature (I approximately 1/T), consistent with Curie's law. This behavior indicates a triplet ground-state diradical with a large triplet-singlet energy gap or possibly a degeneracy of singlet and triplet states.  相似文献   
105.
The molecular structure, electrochemistry, spectroelectrochemistry and electrocatalytic oxygen reduction reaction (ORR) features of two CoII porphyrin(2.1.2.1) complexes bearing Ph or F5Ph groups at the two meso-positions of the macrocycle are examined. Single crystal X-ray analysis reveal a highly bent, nonplanar macrocyclic conformation of the complex resulting in clamp-shaped molecular structures. Cyclic voltammetry paired with UV/Vis spectroelectrochemistry in PhCN/0.1 M TBAP suggest that the first electron addition corresponds to a macrocyclic-centered reduction while spectral changes observed during the first oxidation are consistent with a metal-centered CoII/CoIII process. The activity of the clamp-shaped complexes towards heterogeneous ORR in 0.1 M KOH show selectivity towards the 4e ORR pathway giving H2O. DFT first-principle calculations on the porphyrin catalyst indicates a lower overpotential for 4e ORR as compared to the 2e pathway, consistent with experimental data.  相似文献   
106.
Soil organic matter is involved in many ecosystem processes, such as nutrient supply, metal solubilization, and carbon sequestration. This study examined the ability of multidimensional fluorescence spectroscopy and parallel factor analysis (PARAFAC) to provide detailed chemical information on the preferential sorption of higher-molecular-weight components of natural organic matter onto mineral surfaces. Dissolved organic matter (DOM) from soil organic horizons and tree leaf tissues was obtained using water extracts. The suite of fluorescence spectra was modeled with PARAFAC and it was revealed that the DOM extracts contained five fluorescing components: tryptophan-like (peak location at excitation <255 nm:emission 342 nm), tyrosine-like (276 nm:312 nm), and three humic-substance-like components (<255 nm:456 nm, 309 nm:426 nm, <255 nm:401 nm). In general, adsorption onto goethite and gibbsite increased with increasing DOM molecular weight and humification. PARAFAC analysis of the pre- and post-sorption DOM indicated that the ordering of sorption extent was humic-like components (average 91% sorption) > tryptophan-like components (52% sorption) > tyrosine-like components (29% sorption). This differential sorption of the modeled DOM components in both the soil organic horizon and leaf tissue extracts led to the fractionation of DOM. The results of this study demonstrate that multidimensional fluorescence spectroscopy combined with PARAFAC can quantitatively describe the chemical fractionation process due to the interaction of DOM with mineral surfaces.  相似文献   
107.
The mechanism of formation for clusters of serine generated by electrospray ionization is hypothesized to play a critical role in determining their ultimate properties. Under carefully manipulated electrospray source conditions, two distinct and well-separated distributions of clusters can be observed. The characteristics of the two cluster populations are consistent with different formation mechanisms, namely ion evaporation and charge residue. Upon further inspection, it is proposed that the magic number intensity, homochiral selectivity, and unique formation of the serine octamer are best explained within the context of the ion evaporation mechanism. As a consequence, solution phase properties of the octamer become important, particularly in relation to interface effects present on the surface of the charged droplet. In contrast, other clusters of serine, including the B form of the octamer, are probably generated by the charge residue mechanism and may have no connection to condensed phase phenomena.  相似文献   
108.
Heme a, the metalloporphyrin cofactor unique to cytochrome c oxidases, differs from the more common heme b by two chemical modifications, a C-2 hydroxyethylfarnesyl group and a C-8 formyl group. To elucidate a role of the C-8 formyl group, we compare the heme affinity, spectroscopy, and electrochemistry of a heme a mimic, Fe(diacetyldeuterioporphyrin IX) or Fe(DADPIX), with heme b, Fe(protoporphryrin IX) or Fe(PPIX), incorporated into a designed heme protein. The [Delta7-H3m]2 protein ligand, or maquette, selected for this study contains two equivalent bis-(3-methyl-L-histidine) heme binding sites within a four-alpha-helix bundle scaffold. The spectroscopic data on Fe(PPIX) and Fe(DADPIX) bound to [Delta7-H3m]2 demonstrate that these complexes are excellent synthetic analogues for natural cytochromes b and a, respectively. Comparison of the spectroscopic, electrochemical, and equilibrium thermodynamic data measured for the Fe(PPIX)-[Delta7-H3m]2 maquette with the previously reported Fe(PPIX)-[Delta7-His]2 complex demonstrates that changing the heme axial ligands to 3-methyl-L-histidine from L-histidine does not alter the resulting heme protein properties significantly in either oxidation state. Heme binding studies demonstrate that [Delta7-H3m]2 binds two ferrous Fe(DADPIX) or Fe(PPIX) moieties with similar dissociation constant values. However, in the ferric state, the data show that [Delta7-H3m]2 only binds a single Fe(DADPIX) and that one 2500-fold weaker than oxidized Fe(PPIX). The data demonstrate that the 4.6 kcal mol(-1) weakened affinity of [Delta7-H3m]2 for oxidized Fe(DADPIX) results in the majority of the 160 mV, 3.7 kcal mol(-1), positive shift in the heme reduction potential relative to Fe(PPIX). These data indicate that a role of the formyl group on heme a is to raise the iron reduction potential, thus making it a better electron acceptor, but that it does so by destabilizing the affinity of bis-imidazole sites for the ferric state.  相似文献   
109.
[reaction: see text]. A study of nickel-catalyzed reductive coupling reactions of aldehydes and chiral 1,6-enynes has provided evidence for three distinct mechanistic pathways that govern regioselectivity in this transformation. In the absence of a phosphine additive, high regioselectivity and high diastereoselectivity are obtained as a direct result of coordination of both the alkyne and the olefin to the metal center during the C-C bond-forming step.  相似文献   
110.
Three sets of crystal-structure data reported for AlVO(4) from two powder-XRD studies and a density functional theory (DFT) investigation, employing the Vienna ab initio simulation package (VASP), have been examined and refined using the DFT structure-optimization scheme implemented in the WIEN2k software. The crystal structures are evaluated on the basis of (27)Al and (51)V quadrupole coupling parameters recently reported for AlVO(4), employing the corresponding electric-field gradient (EFG) tensor elements obtained from the DFT calculations. The DFT calculations provide a reliable assignment of the (27)Al/(51)V resonances from three distinct Al and three V environments to the specific crystallographic sites in the asymmetric unit for AlVO(4). An improved agreement between experimental quadrupole tensor elements and calculated EFG tensors is achieved after the DFT structure optimizations and consistent results are obtained using the three different structures as starting points. The improvement of the structural data is also supported by an evaluation of the Al-O and V-O bond lengths before and after DFT structure optimization. The (51)V nuclear quadrupole moment, |Q((51)V)| = 4.8 +/- 0.1 fm(2), derived from the present analysis, represents a value of higher accuracy than earlier reported Q((51)V) values. The origin of the (27)Al and (51)V EFGs are investigated by an evaluation of the orientations of the EFG tensors in the crystal frame and by an examination of the individual contributions from the valence electrons and the surrounding lattice. The latter investigation shows that the magnitude and orientation of the tensors are largely determined by the p-p((27)Al) and p-p, d-d((51)V) orbital contributions to the valence electrons, while the lattice part only gives a minor contribution for both nuclei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号