首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79723篇
  免费   417篇
  国内免费   389篇
化学   25245篇
晶体学   808篇
力学   6828篇
数学   32108篇
物理学   15540篇
  2021年   33篇
  2020年   29篇
  2018年   10452篇
  2017年   10278篇
  2016年   6098篇
  2015年   895篇
  2014年   368篇
  2013年   395篇
  2012年   3913篇
  2011年   10641篇
  2010年   5731篇
  2009年   6138篇
  2008年   6692篇
  2007年   8841篇
  2006年   318篇
  2005年   1381篇
  2004年   1580篇
  2003年   2028篇
  2002年   1045篇
  2001年   286篇
  2000年   329篇
  1999年   177篇
  1998年   213篇
  1997年   163篇
  1996年   222篇
  1995年   145篇
  1994年   90篇
  1993年   118篇
  1992年   81篇
  1991年   86篇
  1990年   64篇
  1989年   81篇
  1988年   81篇
  1987年   68篇
  1986年   65篇
  1985年   59篇
  1984年   52篇
  1983年   49篇
  1982年   49篇
  1981年   49篇
  1980年   52篇
  1979年   49篇
  1978年   44篇
  1973年   35篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   
992.
A kind of novel mesoporous, electrochemical active material, amorphous MnO2 has been synthesized by an improved reduction reaction and using supramolecular as template. The synthesized sample was characterized physically by thermogravimetric analysis, X-ray diffraction, transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET) surface area measurement, respectively. Electrochemical characterization was performed using cyclic voltammetry and chronopotentiometry in 2 mol/l KOH aqueous solution electrolyte. The results of BET and TEM analysis indicated that supramolecular template plays an important role in the process of big specific surface area mesoporous material forming. After sintering at 200 °C, the sample still remained an amorphous structure, and its specific capacitance reached 298.7 F/g and presented a very stable capacitance after 500 cycles. In addition, the electrochemical process, such as ion transfer and electrical condition, was also investigated with electrochemical impedance spectroscopy.  相似文献   
993.
A heterogeneous, multi-layer mass transfer model is proposed for prediction of the effect of multi-layer packing of catalyst particles adhered to the gas-liquid interface. The behavior of the mass transfer rate with respect to the multi-layer packing, to the particle size and mass transfer coefficient without particles is discussed. It is shown that enhancement can be considerably increased by multi-layer packing compared to that of mono-layer packing, depending on the values of particle size and mass transfer coefficient. The predicted mass transfer rates using the proposed model was verified with experimental data taken from the literature. The model presented should be superior to that of published in the literature.  相似文献   
994.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   
995.
The ionic liquid 1-N-butyl-3-methylimidazolium chloride ([C4mim]+Cl) was investigated as reaction media for the homogeneous acylation of cellulose with 2-furoyl chloride in the presence of pyridine. The preparation of cellulose furoate depending on the reaction conditions, the cellulose type and the pyridine content was studied. Cellulose furoates with a degree of substitution in the range from 0.46 to 3.0 were accessible, i.e., under mild conditions, with a low excess of reagent and in a short reaction time. The products were characterized by elemental analysis, perpropionylation, 1H- and 13C NMR spectroscopy and FTIR spectroscopy. Thomas Heinze is the member of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu  相似文献   
996.
In this study, poly(N-methylolacrylamide)/polymethylacrylamide (PNMA/PMAA) hybrids were produced successfully by frontal free-radical polymerization at ambient pressure. In a typical run, the appropriate amounts of reactants (N-methylolacrylamide, NMA; methylacrylamide, MAA) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide at ambient temperature. Frontal polymerization (FP) was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self-propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. The dependences of the front velocity and front temperature on the initiator concentration, reactant dilution, and NMA/MAA components were thoroughly investigated. The front temperatures were between 69 and 116 °C, depending on the persulfate concentration. We have also investigated the FP of PNMA/PMAA hybrids with N-methyl-2-pyrrolidone as solvent. Results show that FP can be exploited as a means for the preparation of PNMA/PMAA hybrids with the potential advantage of higher throughput compared to the traditional mode.  相似文献   
997.
A new compound (5R, 10R)-3,8-dihydroxy-5,10-diethoxy-5,10-dihydrochromeno[5,4,3-cde]chromene monohydrate was obtained from 3,4-dihydroxybenzaldehyde in aerobic basic aqueous ethanol solution in the presence of manganese chloride and triethylamine and crystallized in orthorhombic P212121 space group (denoted as 1). When 1 was recrystallized from aqueous methanol, it was transformed to another crystal (2) with the same composition but in P21/n space group. The drastic difference in the extensive hydrogen bond network makes 1 a 3D and 2 a 2D infinite supramolecular structure, respectively.  相似文献   
998.
Nanoparticles of α-phase nickel hydroxide were synthesized by a single-step hydrothermal method using urea as the hydrolytic agent. Precipitated powders were of pure turbostratic α-phase as confirmed by x-ray diffraction profile. The ageing of α-Ni(OH)2 in 1.0 M alkali solutions is investigated for pure non-intercalated α-Ni(OH)2 and thiourea intercalated/absorbed α-phase nanomaterials. The α-Ni(OH)2 powder immobilized on the surface of graphite electrodes shows a gradual α→β phase transformation with continuous voltammetric cycling, and the concentration gradient of water that exists in the layered-double-hydroxide-like interlayers of α-phase and the solution was shown to play a crucial role on the high electrochemical activity of this phase nickel hydroxide. To understand the role of water in the ageing process, concomitant entries of non-aqueous solvents like ethanol and acetonitrile along with thiourea were effected. Cyclic voltammetric measurements of thiourea-treated α-Ni(OH)2 samples revealed that hydroxyl ion influx during the anodic oxidation depends on the counter flux of solvent molecules, and if the intercalated the solvent is acetonitrile, then the electrochemical activity of α-Ni(OH)2 reduced drastically; Q a/Q c>1 for water as solvent in the interlayers α-Ni(OH)2 and Q a/Q c<1 for ethanol and acetonitrile as solvents. The α-phase gets stabilized in the presence of thiourea with water and ethanol as co-intercalates. Transmission electron microscope images of α-Ni(OH)2 and thiourea-treated samples show a change in particle size and morphology. Elemental CHNS analysis confirms the presence of sulphur in the thiourea intercalated samples.  相似文献   
999.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   
1000.
Two novel RuII complexes [Ru(phen)2(PNOPH)]2+ and [Ru(dmp)2 (PNOPH)]2+ (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, PNOPH = 2-(4-nitrophenyl)imidazo-[4,5-f][1,10]phenanthroline) and their deprotoned complexes were synthesized and characterized by ES–MS, 1H - n.m.r, u.v.–vis. and electrochemistry. The crystal structure of the deprotonated complex [Ru(dmp)2 (PNOP)][ClO4] · CH3CN was determined by means of X-ray single crystal diffraction. Nonlinear optical properties of the RuII complexes were investigated by Z-scan techniques in DMF solution, and all of them exhibited both NLO absorption and self-defocusing effect. The corresponding effective NLO susceptibilities |3 | of the complexes are 2.39 × 10-12–5.80 × 10-12 esu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号