首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   0篇
化学   132篇
晶体学   1篇
力学   2篇
物理学   34篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   7篇
  2010年   1篇
  2008年   11篇
  2007年   10篇
  2006年   16篇
  2005年   19篇
  2004年   20篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1990年   1篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1969年   1篇
排序方式: 共有169条查询结果,搜索用时 0 毫秒
61.
On the basis of Born-Green-Yvon integral equations for the density distribution functions, an approximate integral equation is established for the profile of the surface of the drop. Numerical solutions and analytical solutions for limiting cases are obtained for this profile. Equations relating the angle at the leading edge and in its vicinity to parameters characterizing the interaction forces between the molecules of the liquid and between those of the liquid and solid are derived for large and for very small drops on a horizontal solid surface. One concludes that there is a rapid spatial variation of shape near the leading edge, that for large drops the measured macroscopic wetting angle is reached at a distance of about 20 to 40 Å from the leading edge, and that for very small drops the wetting angle is weakly size dependent. A condition for drop stability is established, which if not satisfied, the liquid will spread over the surface of the solid.  相似文献   
62.
An analysis of the cosolvent concentration dependence of the osmotic second virial coefficient (OSVC) in water-protein-cosolvent mixtures is developed. The Kirkwood-Buff fluctuation theory for ternary mixtures is used as the main theoretical tool. On its basis, the OSVC is expressed in terms of the thermodynamic properties of infinitely dilute (with respect to the protein) water-protein-cosolvent mixtures. These properties can be divided into two groups: (1) those of infinitely dilute protein solutions (such as the partial molar volume of a protein at infinite dilution and the derivatives of the protein activity coefficient with respect to the protein and water molar fractions) and (2) those of the protein-free water-cosolvent mixture (such as its concentrations, the isothermal compressibility, the partial molar volumes, and the derivative of the water activity coefficient with respect to the water molar fraction). Expressions are derived for the OSVC of ideal mixtures and for a mixture in which only the binary mixed solvent is ideal. The latter expression contains three contributions: (1) one due to the protein-solvent interactions B2(p-s), which is connected to the preferential binding parameter, (2) another one due to protein/protein interactions (B2(p-p)), and (3) a third one representing an ideal mixture contribution (B2(id)). The cosolvent composition dependencies of these three contributions were examined for several water-protein-cosolvent mixtures using experimental data regarding the OSVC and the preferential binding parameter. For the water-lysozyme-arginine mixture, it was found that OSVC exhibits the behavior of an ideal mixture and that B2(id) provides the main contribution to the OSVC. For the other mixtures considered (water-Hm MalDH-NaCl, water-Hm MalDH-(NH4)2SO4, and water-lysozyme-NaCl mixtures), it was found that the contribution of the protein-solvent interactions B2(p-s) is responsible for the composition dependence of the OSVC on the cosolvent concentration, whereas the two remaining contributions (B2(p-p)) and B2(id)) are almost composition independent.  相似文献   
63.
This paper is focused on the composition of a cosolvent in the vicinity of a protein surface (local composition) and its dependence on various factors. First, the Kirkwood-Buff theory of solution is used to obtain analytical expressions that connect the excess or deficit number of cosolvent and water molecules in the vicinity of a protein surface with experimentally measurable quantities such as the bulk concentration of the mixed solvent, the preferential binding parameter, and the molar volumes of water and cosolvent. Using these expressions, relations between the preferential binding parameter (at a molal concentration scale) and the above excesses (or deficits) are established. In addition, the obtained expressions are used to examine the effect of the nonideality of the water + cosolvent mixtures and of the molar volume of the cosolvent on the excess (or deficit) number of cosolvent molecules in the vicinity of the protein surface. It is shown that at least for the mixed solvents considered (water + urea and water + glucose) the nonideality of the mixed solvent is not an important factor in the local compositions around a protein molecule and that the main contribution is provided by the nonidealities of the protein-water and protein-cosolvent mixtures. Special attention is paid to urea as cosolvent, because urea is one of only a few compounds with a concentration at the protein surface larger than its concentration in the bulk. The composition dependence of the excess of urea around a protein molecule is calculated for the water + lysozyme + urea mixture at pH = 7.0 and 2.0. At pH = 7.0, the excess of urea becomes almost composition independent at high urea concentrations. Such independence could be explained by assuming that urea totally replaces water in some areas of the protein surface, whereas on the remaining areas of the protein surface both water and urea are present with concentration comparable to those in the bulk. The Schellman exchange model was used to relate the preferential binding parameter in water + lysozyme + urea mixtures to the urea concentration.  相似文献   
64.
The possible encapsulation of the interstellar abundant H3+ ion inside a C60 fullerene cage has been examined by using the Hartree‐Fock (HF) and the second order Møller‐Plesset perturbation (MP2) methods both with the 6‐31G** basis set. It was found that H3+ forms various stable endohedral complexes inside the cage. Six configurations have been examined among which four were stable compared with the separated initial species, the dissociated H2 + H+ inside the cage being the most stable. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
65.
The density functional theory of inhomogeneous simple fluids is extended to an Ising magnetic fluid in contact with a solid surface, which is subjected to an external uniform or nonuniform magnetic field. The system is described by two coupled integral equations regarding the magnetic moment and fluid density distributions. The dependence of the contact angle that a nanodrop makes with the solid surface on the parameters involved in the magnetic interactions between the molecules of fluid and between the molecules of fluid and an external magnetic field is calculated. For the uniform magnetic field, the contact angle increases with increasing magnetic field, approaching an asymptotic value that depends on the strength of the fluid-fluid magnetic interactions. In the nonuniform field generated by a permanent magnet, the contact angle first increases with increasing magnetic field B(M) and then decreases, with the decrease being almost linear for large values of B(M). The obtained results are in qualitative agreement with the experimental data on the contact angle of magnetic drops on a solid surface available in the literature.  相似文献   
66.
67.
Time-dependent contact angle measurements are employed to follow the dynamics of surface modifications of various polymeric surfaces of different hydrophilicities. The equilibration of a hydrophilic polymer in a strong polar environment (such as water) induces an increase in the polarity of the surface; the subsequent exposure of the restructured solid to a nonpolar environment decreases the polarity of the surface. The dynamics of these processes depends on the history of the specimen. Various phenomena, such as surface restructuring by the reorientation of the buried polar or nonpolar moieties, water penetration into the polymer, and the reorganization of water in the neighborhood of the surface, are suggested to be responsible for the time evolution of the dynamic contact angles.  相似文献   
68.
69.
The extended Hückel method (EHM) is used here to investigate how the bond strengths of Pt(100) and Pt(111) clusters, containing 9 and 10 atoms, respectively, are affected by the chemisorbed H, O, Cl, or S atoms. Three adsorption sites are considered on each cluster. For most adsorption sites Cl and S weaken all the PtPt bonds, while H and O strengthen the bonds between some Pt atoms and weaken the bonds between some other Pt atoms. The enhanced mobility of the Pt atoms, that occurs upon adsorption of the above elements, is proposed as the mechanism behind the first step in corrosive chemisorption and in the redispersion of supported Pt catalysts. The strong destabilizing effect of S and Cl is attributed to the empty d orbitais of these elements. An attempt is made to explain the poisoning by Sulfur on the basis of long range structural and electronic changes that occur in the Pt clusters upon chemisorption of S.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号