首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   3篇
  国内免费   3篇
化学   75篇
力学   15篇
数学   92篇
物理学   81篇
  2020年   2篇
  2018年   3篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   11篇
  2010年   6篇
  2009年   9篇
  2008年   12篇
  2007年   11篇
  2006年   15篇
  2005年   12篇
  2004年   9篇
  2003年   10篇
  2002年   4篇
  2001年   9篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   10篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1973年   8篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有263条查询结果,搜索用时 0 毫秒
261.
Motivated by experimentally-observed biocompatibility enhancement of nanoengineered cubic zirconia (ZrO(2)) coatings to mesenchymal stromal cells, we have carried out computational analysis of the initial immobilization of one known structural fragment of the adhesive protein (fibronectin) on the corresponding surface. We constructed an atomistic model of the ZrO(2) nano-hillock of 3-fold symmetry based on Atom Force Microscopy and Transmission Electron Microscopy images. First principle quantum mechanical calculations show a substantial variation of electrostatic potential at the hillock due to the presence of surface features such as edges and vertexes. Using an implemented Monte Carlo simulated annealing method, we found the orientation of the immobilized protein on the ZrO(2) surface and the contribution of the amino acid residues from the protein sequence to the adsorption energy. Accounting for the variation of the dielectric permittivity at the protein-implant interface, we used a model distance-dependent dielectric function to describe the inter-atom electrostatic interactions in the adsorption potential. We found that the initial immobilization of the rigid protein fragment on the nanostructured pyramidal ZrO(2) surface is achieved with a magnitude of adsorption energy larger than that of the protein on the smooth (atomically flat) surface. The strong attractive electrostatic interactions are a major contributing factor in the enhanced adsorption at the nanostructured surface. In the case of adsorption on the flat, uncharged surface this factor is negligible. We show that the best electrostatic and steric fit of the protein to the inorganic surface corresponds to a minimum of the adsorption energy determined by the non-covalent interactions.  相似文献   
262.
Interactions of peptides and proteins with inorganic surfaces are important to both natural and artificial systems; however, a detailed understanding of such interactions is lacking. In this study, we applied new approaches to quantitatively measure the binding of amino acids and proteins to gold surfaces. Real‐time surface plasmon resonance (SPR) measurements showed that TEM1‐β‐lactamase inhibitor protein (BLIP) interacts only weakly with Au nanoparticles (NPs). However, fusion of three histidine residues to BLIP (3H‐BLIP) resulted in a significant increase in the binding to the Au NPs, which further increased when the histidine tail was extended to six histidines (6H‐BLIP). Further increasing the number of His residues had no effect on the binding. A parallel study using continuous (111)‐textured Au surfaces and single‐crystalline, (111)‐oriented, Au islands by ellipsometry, FTIR, and localized surface plasmon resonance (LSPR) spectroscopy further confirmed the results, validating the broad applicability of Au NPs as model surfaces. Evaluating the binding of all other natural amino acid homotripeptides fused to BLIP (except Cys and Pro) showed that aromatic and positively‐charged residues bind preferentially to Au with respect to small aliphatic and negatively charged residues, and that the rate of association is related to the potency of binding. The binding of all fusions was irreversible. These findings were substantiated by SPR measurements of synthesized, free, soluble tripeptides using Au‐NP‐modified SPR chips. Here, however, the binding was reversible allowing for determination of binding affinities that correlate with the binding potencies of the related BLIP fusions. Competition assays performed between 3H‐BLIP and the histidine tripeptide (3 His) suggest that Au binding residues promote the adsorption of proteins on the surface, and by this facilitate the irreversible interaction of the polypeptide chain with Au. The binding of amino acids to Au was simulated by using a continuum solvent model, showing agreement with the experimental values. These results, together with the observed binding potencies and kinetics of the BLIP fusions and free peptides, suggest a binding mechanism that is markedly different from biological protein–protein interactions.  相似文献   
263.
Dendrites formation in the course of crystallization presents very general phenomenon, which is analyzed in details via the example of ice crystals growth in deionized water. Neutral molecules of water on the surface are combined into the double electric layer (DEL) of oriented dipoles; its field reorients approaching dipoles with observable radio-emission in the range of 150 kHz. The predominant attraction of oriented dipoles to points of gradients of this field induces dendrites growth from them, e.g., formation of characteristic form of snowflakes at free movement of clusters through saturated vapor in atmosphere. The constant electric field strengthens DELs' field and the growth of dendrites. Described phenomena should appear at crystallization of various substances with dipole molecules, features of radio-emission can allow the monitoring of certain processes in atmosphere and in technological processes. Crystallization of particles without constant moments can be stimulated by DELs of another nature with attraction of virtual moments of particles to gradients of fields and corresponding dendrites formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号