首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1250篇
  免费   199篇
  国内免费   145篇
化学   705篇
晶体学   19篇
力学   48篇
综合类   21篇
数学   187篇
物理学   614篇
  2024年   3篇
  2023年   26篇
  2022年   41篇
  2021年   44篇
  2020年   42篇
  2019年   24篇
  2018年   34篇
  2017年   37篇
  2016年   50篇
  2015年   42篇
  2014年   59篇
  2013年   72篇
  2012年   87篇
  2011年   109篇
  2010年   82篇
  2009年   79篇
  2008年   81篇
  2007年   60篇
  2006年   54篇
  2005年   56篇
  2004年   48篇
  2003年   50篇
  2002年   38篇
  2001年   35篇
  2000年   24篇
  1999年   46篇
  1998年   47篇
  1997年   39篇
  1996年   31篇
  1995年   29篇
  1994年   23篇
  1993年   22篇
  1992年   14篇
  1991年   11篇
  1990年   6篇
  1989年   5篇
  1988年   5篇
  1987年   11篇
  1986年   12篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1594条查询结果,搜索用时 62 毫秒
21.
本文提出电位溶出法作为一种测定金属在汞中的扩散系数的新方法。建立了该法的理论基础, 并用该法测定了10种金属在单一汞齐中的扩散系数和锌、镉在多元复合汞齐中的扩散系数。  相似文献   
22.
Dispersion of MoO3, NiO, ZnO on rutile TiO2 with low specific surface area was studied with Mercury Porosimeter, SEM, XPS and Ammonia Extraction method. The dispersion thresholds of MoO3, NiO, ZnO on three rutile TiO2 carriers were obtained with XPS, and com-pared with those on anatase TiO2 with high specific surf are area. Ammonia Extraction method was used to identify the surface oxide species interarting with support surface in different strength and it was found that the proportions of oxides that can not be extracted by ammonia extraction are different for MoO3, NiO and ZnO which are supported on rutile TiO2.  相似文献   
23.
Ruthenium polypyridyl complexes which can sensitise the photo-oxidation of nucleic acids and other biological molecules show potential for photo-therapeutic applications. In this article a combination of transient visible absorption (TrA) and time-resolved infra-red (TRIR) spectroscopy are used to compare the photo-oxidation of guanine by the enantiomers of [Ru(TAP)2(dppz)]2+ in both polymeric {poly(dG-dC), poly(dA-dT) and natural DNA} and small mixed-sequence duplex-forming oligodeoxynucleotides. The products of electron transfer are readily monitored by the appearance of a characteristic TRIR band centred at ca. 1700 cm−1 for the guanine radical cation and a band centered at ca. 515 nm in the TrA for the reduced ruthenium complex. It is found that efficient electron transfer requires that the complex be intercalated at a G-C base-pair containing site. Significantly, changes in the nucleobase vibrations of the TRIR spectra induced by the bound excited state before electron transfer takes place are used to identify preferred intercalation sites in mixed-sequence oligodeoxynucleotides and natural DNA. Interestingly, with natural DNA, while it is found that quenching is inefficient in the picosecond range, a slower electron transfer process occurs, which is not found with the mixed-sequence duplex-forming oligodeoxynucleotides studied.

Efficient electron transfer requires the complex to be intercalated at a G-C base-pair. Identification of preferred intercalation sites is achieved by TRIR monitoring of the nucleobase vibrations before electron transfer.  相似文献   
24.
使用BeckmannDU-8B紫外可见分光光度计研究了以氯合四-间三甲苯基卟啉铁(Ⅲ)(FeTMPCl)为催化剂,间氯过氧化苯甲酸(mCPBA)为氧化剂,咪唑(I_m)、2-甲基咪唑(MeI_m)、2-乙基-4-甲基咪唑(EMI_m)为轴向配体,催化β-胡萝卜素(β-cte)氧化分解为维生素A的动力学规律,提出了反应机理,研究了温度、催化剂浓度、氧化剂浓度及轴向配体对反应速率的影响,应用Gauss-Newton-Marquardt方法求得各基元反应的有关动力学参数.  相似文献   
25.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
26.
27.
姚彤炜  曾苏  阮宏强  陈枢青 《色谱》1998,16(5):408-410
 采用手性毛细管色谱柱和FID检测器建立了人尿中美芬妥英(MP)对映体的定量分析方法。尿样用二氯乙烷提取,用酸、碱洗涤得以纯化,测得各对映体的最低检测限为60μg/L。在115~690μg/L浓度范围内,标准曲线呈良好的线性关系,r>0.99,日内、日间精密度RSD<6.5%,S-MP的平均回收率为74.41%,R-MP的平均回收率为73.78%。并以MP为探针药物,对32名志愿者的尿样进行了MP氧化代谢分型研究。  相似文献   
28.
Ruan X  Chang H 《Talanta》1988,35(11):861-867
Reciprocal derivative constant-current stripping analysis (RD-CCSA) is based on the measurement of dt/dE converted from a derivative signal, dE/dt, vs. electrode potential (E) during the stripping of analyte under galvanostatic conditions from a mercury-film electrode after preconcentration. The potential transient signal (E-t) in normal chronopotentiometric stripping analysis (CPSA) is converted in RD-CCSA into a stripping peak (dT/dE)(p) the height of which is proportional to the bulk concentration of analyte in solution. The theory of RD-CCSA has been derived, and validated by the good correlation obtained between the theory and experimental data. Compared with normal CPSA, RD-CCSA is more sensitive and has higher resolution. The detection limit for cadmium is 6 x 10(-10)M. Simultaneous determination of Cd(2+), In(3+), and Tl(+) (for which the differences between the stripping peak potentials are 58 and 50 mV, respectively) which is impossible for normal CPSA, voltammetry or differential pulse polarography, has become possible with RD-CCSA.  相似文献   
29.
The kinetics of dehydroxylation of synthetic aluminous goethite was studied using isothermal and non-isothermal thermogravimetry. The complete isothermal dehydroxylation can be described by the Johnson-Mehl equation with up to three linear regions in plots of lnln [1/(1–y)]vs. Int Kinetics for the initial stage of dehydroxylation changed from diffusion to first-order through the temperature range 190 to 260°C. The rate of dehydroxylation was reduced by Al-substitution and increased with temperature. Activation energy for dehydroxylation, calculated from the time to achieve a given dehydroxylation extent, varied depending on the extent of dehydroxylation and Al-substitution. Non-stoichiometric OH existed in goethite and some remained in hematite after the complete crystallographic transition.  相似文献   
30.
用停流FIA-分光光度法研究了铬(Ⅵ)-碘化钾动力学反应体系中铁(Ⅱ)和钒(Ⅳ)的协同诱导效应,以协同系数(D)表示二者相互作用程度的大小,在此基础上提出了一种新的动力学双组份同时测定的方法,本法可扩大前述方法的线性范围,并降低检测限,测定了模拟水样品中铁和钒的含量,结果满意。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号