首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   5篇
化学   76篇
力学   5篇
数学   8篇
物理学   31篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   10篇
  2015年   4篇
  2014年   8篇
  2013年   6篇
  2012年   13篇
  2011年   14篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1963年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
41.
The effect of substituents in the para position of anilide ion (An) on the N?···H–F → N–H···F? switching in X–An–HF (X = H, Me, CHO, CN, NO, F, NO2, OH and OMe) complexes was investigated by means of B3LYP and MP2 quantum chemical methods. To delve into the mechanistic details of the proton transfer process, potential energy curve and further geometrical parameters involved in H-bonding during the course of the proton transfer process were evaluated at the MP2/6-311++G(2d,2p) level of theory. The changes in H-bond strength because of variation of substituents were well accompanied by changes in formation energy of complexes, structural parameter, electron density, natural charge and charge transfer between subunits. For X = H, Me, CHO, CN, NO, F and NO2 substituents, our results at MP2/6-311++G(2d,2p) level showed that the minimum energy structures correspond to the N···HF H-bonded complexes without proton transfer occurring. On the other hand, for electron-donating substituents OH and OMe, proton is transferred from HF to anilide ion and the minimum energy structures are HNH···F? H-bonded complexes. The nature of HN?···HF and HN–H···F? interactions in complexes was characterized by means of atoms in molecules and natural bond orbital analyses.  相似文献   
42.
Conductive polymers have found extensive application in fuel cells, sensors and more recently as scaffolds for tissue and organ regeneration. Scaffolds that can transmit electrical impulses have been shown to be beneficial in regeneration of tissues like muscle and nerve that are electroactive in nature. Most cellular events and cell functions are regulated by ion movement, and their imbalance is the cause of several diseases. We report synthesis and characterization of sulfonated polymers of poly(methyl vinyl ether‐alt‐maleic anhydride) (PMVEMA), poly(ether ether ketone) (PEEK), poly(ether sulfone) (PES) and poly(phenylene oxide) (PPO) and evaluate their potential for tissue regeneration. The ionic conductive property stems from the presence of sulfonic groups on the polymer backbone. The structure of the polymer was confirmed using Fourier Transform Infrared Spectroscopy and membrane hydrophicity was determined by water contact angle measurement. The electrical conductivity of these sulfonated membranes was found to be 53.55, 35.39 and 29.51 mS/cm for SPPO, SPEEK and SPMVEMA, respectively. The conductivity was directly proportional to the sulfonic acid content on the polymer backbone. The ionic membranes namely SPPO, SPEEK and SPMVEMA demonstrated superior cell adhesion properties (~7–10 fold higher) than cells seeded onto tissue culture polystyrene. The sulfonated membranes exhibited static water contact angle in the range of 70–76°. The membranes supported the proliferation of human skin fibroblasts over 14 days in culture as evidenced by confocal and electron microscopy imaging. The ionic materials reported in this study may serve as scaffolds for a variety of tissue healing and drug delivery applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
43.
Ketorolac, a nonsteroidal anti‐inflammatory drug, was subjected to forced degradation studies as per International Conference on Harmonization guidelines. A simple, rapid, precise, and accurate high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (LC/ESI/Q/TOF/MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of ketorolac. The drug was found to degrade in hydrolytic (acidic, basic, and neutral), photolytic (acidic, basic, and neutral solution), and thermal conditions, whereas the solid form of the drug was found to be stable under photolytic conditions. The method has shown adequate separation of ketorolac tromethamine and its degradation products on a Grace Smart C‐18 (250 mm × 4.6 mm i.d., 5 µm) column using 20 mM ammonium formate (pH = 3.2): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 1.0 ml/min. A total of nine degradation products were identified and characterized by LC/ESI/MS/MS. The most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H]+ ions of ketorolac and its degradation products. In silico toxicity of the drug and degradation products was investigated by using topkat and derek softwares. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
44.
45.
Silodosin (SLD) is a novel α1‐adrenoceptor antagonist which has shown promising clinical efficacy and safety in patients with benign prostatic hyperplasia (BPH). However, lack of information about metabolism of SLD prompted us to investigate metabolic fate of SLD in rats. To identify in vivo metabolites of SLD, urine, feces and plasma were collected from Sprague–Dawley rats after its oral administration. The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 13 phase I and six phase II metabolites of SLD have been identified in rat urine which includes hydroxylated, N‐dealkylated, dehydrogenated, oxidative, glucosylated, glucuronide and N‐sulphated metabolites, which are also observed in feces. In plasma, only dehydrogenated, N‐dealkylated and unchanged SLD are observed. The structure elucidation of metabolites was done by fragmentation in MS/MS in combination with HRMS data. The potential toxicity profile of SLD and its metabolites were predicted using TOPKAT software and most of the metabolites were proposed to show a certain degree of skin sensitization and occular irritancy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
46.
Hong BC  Nimje RY  Sadani AA  Liao JH 《Organic letters》2008,10(12):2345-2348
Organocatalytic Michael reaction of glutaraldehyde and 3-arylpropenal followed by the subsequent intramolecular aldol condensation provided 2-arylcyclohex-3-ene-1,3-dicarbaldehydes. Reactions with the 5-oxohexanal variant afforded the highly functionalized cyclohexenedicarbaldehydes in high diastereoselectivity and high enantioselectivity (>99% ee). Structure of the adduct 3j was confirmed unambiguously by X-ray analysis.  相似文献   
47.
The organocatalytic direct self-trimerization of acrolein, via cascade double-Michael and Mannich reactions, affording 5-methylenecyclohex-3-ene-1,3-dicarbaldehyde (1) is described. Synthetic application of the reaction was demonstrated by further transformations of 1 to montiporyne F.  相似文献   
48.
The progression of diabetic complications can be prevented by inhibition of aldose reductase and fidarestat considered to be highly potent. To date, metabolites of the fidarestat, toxicity, and efficacy are unknown. Therefore, the present study on characterization of hitherto unknown in vitro and in vivo metabolites of fidarestat using liquid chromatography–electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) is undertaken. In vitro and in vivo metabolites of fidarestat have been identified and characterized by using LC/ESI/MS/MS and accurate mass measurements. To identify in vivo metabolites, plasma, urine, and feces samples were collected after oral administration of fidarestat to Sprague–Dawley rats, whereas for in vitro metabolites, fidarestat was incubated in human S9 fraction, human liver microsomes, and rat liver microsomes. Furthermore, in silico toxicity and efficacy of the identified metabolites were evaluated. Eighteen metabolites have been identified. The main in vitro phase I metabolites of fidarestat are oxidative deamination, oxidative deamination and hydroxylation, reductive defluroniation, and trihydroxylation. Phase II metabolites are methylation, acetylation, glycosylation, cysteamination, and glucuronidation. Docking studies suggest that oxidative deaminated metabolite has better docking energy and conformation that keeps consensus with fidarestat whereas the rest of the metabolites do not give satisfactory results. Aldose reductase activity has been determined for oxidative deaminated metabolite (F‐1), and it shows an IC50 value of 0.44 μM. The major metabolite, oxidative deaminated, did not show any cytotoxicity in H9C2, HEK, HEPG2, and Panc1 cell lines. However, in silico toxicity, the predication result showed toxicity in skin irritation and ocular irritancy SEV/MOD versus MLD/NON (v5.1) model for fidarestat and its all metabolites. In drug discovery and development research, it is distinctly the case that the potential for pharmacologically active metabolites must be considered. Thus, the active metabolites of fidarestat may have an advantage as drug candidates as many drugs were initially observed as metabolites.  相似文献   
49.
A validated stability‐indicating HPLC method was established, and comprehensive stress testing of ivabradine, a cardiotonic drug, was carried out as per ICH guidelines. Ivabradine was subjected to acidic, basic and neutral hydrolysis, oxidation, photolysis and thermal stress conditions, and the resulting degradation products were investigated by LC‐PDA and LC‐HR‐MS/MS. The drug was found to degrade in acid and base hydrolysis. An efficient and selective stability assay method was developed on Phenomenex Luna C18 (250 × 4.6 mm, 5.0 µm) column using ammonium formate (10 mM, pH 3.0) and acetonitrile as mobile phase at 30 °C in gradient elution mode. The flow rate was 0.7 ml/min and detection wavelength was 286 nm. A total of five degradation products (I‐1 to I‐5) were identified and characterized by LC‐HR‐MS/MS in combination with accurate mass measurements. The drug exhibited different degradation behaviour in HCl and H2SO4 hydrolysis conditions. It is a unique example where two of the five degradation products in HCl hydrolysis were absent in H2SO4 acid hydrolysis. The present study provides guidance to revise the stress test for the determination of inherent stability of drugs containing lactam moiety under hydrolytic conditions. Most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation pattern of the drug and its degradation products. In silico toxicity revealed that the degradation products ( I‐2 to I‐5 ) were found to be severe irritants in case of ocular irritancy. The analytical assay method was validated with respect to specificity, linearity, range, precision, accuracy and robustness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号