首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24422篇
  免费   652篇
  国内免费   141篇
化学   16711篇
晶体学   123篇
力学   575篇
数学   4334篇
物理学   3472篇
  2022年   177篇
  2021年   259篇
  2020年   301篇
  2019年   317篇
  2018年   233篇
  2017年   195篇
  2016年   482篇
  2015年   455篇
  2014年   490篇
  2013年   1301篇
  2012年   1139篇
  2011年   1429篇
  2010年   727篇
  2009年   710篇
  2008年   1258篇
  2007年   1280篇
  2006年   1251篇
  2005年   1210篇
  2004年   1053篇
  2003年   913篇
  2002年   816篇
  2001年   347篇
  2000年   278篇
  1999年   248篇
  1998年   276篇
  1997年   307篇
  1996年   360篇
  1995年   249篇
  1994年   282篇
  1993年   264篇
  1992年   238篇
  1991年   241篇
  1990年   191篇
  1989年   232篇
  1988年   240篇
  1987年   202篇
  1986年   195篇
  1985年   291篇
  1984年   338篇
  1983年   218篇
  1982年   366篇
  1981年   336篇
  1980年   316篇
  1979年   317篇
  1978年   323篇
  1977年   292篇
  1976年   279篇
  1975年   250篇
  1974年   248篇
  1973年   234篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm?2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.  相似文献   
993.
d-Kynurenine (d-KYN), a metabolite of d-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine, two neuroactive compounds that are believed to play a role in the pathophysiology of several neurological and psychiatric diseases. In order to investigate the possible presence of d-KYN in biological tissues, we developed a novel assay based on the conversion of d-KYN to KYNA by purified d-amino acid oxidase (d-AAO). Samples were incubated with d-AAO under optimal conditions for measuring d-AAO activity (100 mM borate buffer, pH 9.0), and newly produced KYNA was detected by high-performance liquid chromatography (HPLC) with fluorimetric detection. The detection limit for d-KYN was 300 fmol, and linearity of the assay was ascertained up to 300 pmol. No assay interference was noted when other d-amino acids, including d-serine and d-aspartate, were present in the incubation mixture at 50-fold higher concentrations than d-KYN. Using this new method, d-KYN was readily detected in the brain, liver, and plasma of mice treated systemically with d-KYN (300 mg/kg). In these experiments, enantioselectivity was confirmed by determining total kynurenine levels in the same samples using a conventional HPLC assay. Availability of a sensitive, specific, and simple method for d-KYN measurement will be instrumental for evaluating whether d-KYN should be considered for a role in physiology and pathology.  相似文献   
994.
The detection of hydrogen sulfide (H2S) by 2?+?1 resonance-enhanced multi-photon ionization (REMPI) and the application of H2S as a laser dopant for the detection of polar compounds in laser ion mobility (IM) spectrometry at atmospheric pressure were investigated. Underlying ionization mechanisms were elucidated by additional studies employing a drift cell interfaced to a time-of-flight mass spectrometer. Depending on the pressure, the primary ions H2S+, HS+, S+, and secondary ions, such as H3S+, were observed. The 2?+?1 REMPI spectrum of H2S near λ?=?302.5 nm was recorded at atmospheric pressure. Furthermore, the limit of detection and the linear range were established. In the second part of the work, H2S was investigated as an H2O analogous laser dopant for the ionization of polar substances by proton transfer. H2S exhibits a proton affinity (PA) similar to that of H2O, but a significantly lower ionization energy facilitating laser ionization. Ion-molecule reactions (IMR) of H3S+ with a variety of polar substances with PA between 754.6 and 841.6 kJ/mol were investigated. Representatives of different compound classes, including alcohols, ketones, esters, and nitroaromatics were analyzed. The IM spectra resulting from IMR of H3S+ and H3O+ with these substances are similar in structure, i.e., protonated monomer and dimer ion peaks are found depending on the analyte concentration.  相似文献   
995.
Therapeutic drug monitoring (TDM) requires timely results in order to be clinically helpful. Such assays, when carried out using mass spectrometry-based methods, typically involve a batched sample approach with multipoint calibration. Isotopic internal calibration offers the possibility of open-access mass spectrometric analysis with consequent shortening of turnaround times. We measured plasma clozapine and N-desmethylclozapine (norclozapine) concentrations in (1) external quality assessment (EQA) samples (N?=?22) and (2) patient samples (N?=?100) using liquid chromatography-tandem mass spectrometry with isotopic internal calibration (ICAL-LC-MS/MS). Analyte concentrations were calculated from graphs of the response of three internal calibrators (clozapine-D4, norclozapine-D8, and clozapine-D8) against concentration. Precision (% RSD) and accuracy (% nominal concentrations) for the ICAL-LC-MS/MS method were <5 % and 104–112 %, respectively for both analytes. There was excellent agreement with consensus mean and with ‘spiked’ values on analysis of the EQA samples (R 2?=?0.98 and 0.97, respectively, inclusive of clozapine and norclozapine results). In the patient samples, comparison against traditionally calibrated HPLC-UV and LC-MS/MS methods showed excellent agreement (R 2?=?0.97 or better) with small albeit significant mean differences (<0.041 and <0.042 mg/L for clozapine and norclozapine, respectively). These differences probably reflect discrepancies in the in-house preparation of calibrators and/or interference in the UV method. Internal calibration offers a novel and attractive alternative to traditionally calibrated batch analysis in analytical toxicology. The method described has been validated for use in the high-throughput TDM of clozapine and norclozapine, and allows for (1) same-day reporting of results and (2) significant cost savings.
Figure
A typical internal calibration curve produced using three different isotopically-labelled analogues of clozapine and norclozapine (clozapine-D4, norclozapine-D8 and clozapine-D8) and interpolation of the clozapine and norclozapine concentrations from an extracted patient sample (calculated clozapine and norclozapine 0.47 and 0.31 mg/L, respectively)  相似文献   
996.
Ultrahigh-performance liquid chromatography coupled with high-mass-accuracy tandem mass spectrometry (UHPLC–MS–MS) has been used for elucidation of the structures of oxidation products of atorvastatin (AT), one of the most popular commercially available drugs. The purpose of the study was identification of AT metabolites in rat hepatocytes and comparison with electrochemically generated oxidation products. AT was incubated with rat hepatocytes for 24 h. Electrochemical oxidation of AT was performed by use of a three-electrode off-line system with a glassy carbon working electrode. Three supporting electrolytes (0.1 mol L?1 H2SO4, 0.1 mol L?1 HCl, and 0.1 mol L?1 NaCl) were tested, and dependence on pH was also investigated. AT undergoes oxidation by a single irreversible process at approximately +1.0 V vs. Ag/AgCl electrode. The results obtained revealed a simple and relatively fast way of determining the type of oxidation and its position, on the basis of characteristic neutral losses (NLs) and fragment ions. Unfortunately, different products were obtained by electrochemical oxidation and biotransformation of AT. High-mass-accuracy measurement combined with different UHPLC–MS–MS scans, for example reconstructed ion-current chromatograms, constant neutral loss chromatograms, or exact mass filtering, enable rapid identification of drug-related compounds. β-Oxidation, aromatic hydroxylation of the phenylaminocarbonyl group, sulfation, AT lactone and glycol formation were observed in rat biotransformation samples. In contrast, a variety of oxidation reactions on the conjugated skeleton of isopropyl substituent of AT were identified as products of electrolysis.
Figure
Chemical structure of atorvastatin (AT) composed of four main parts assigned as A, B, C and D including the list of identified oxidation reactions for both electrochemical and in vitro experiments  相似文献   
997.
Low band gap D‐A conjugated PNs consisting of 2‐ethylhexyl cyclopentadithiophene co‐polymerized with 2,1,3‐benzothiadiazole (for nano‐PCPDTBT) or 2,1,3‐benzoselenadiazole (for nano‐PCPDTBSe) have been developed. The PNs are stable in aqueous media and showed no significant toxicity up to 1 mg · mL?1. Upon exposure to 808 nm light, the PNs generated temperatures above 50 °C. Photothermal ablation studies of the PNs with RKO and HCT116 colorectal cancer cells were performed. At concentrations above 100 µg · mL?1 for nano‐PCPDTBSe, cell viability was less than 20%, while at concentrations above 62 µg · mL?1 for nano‐PCPDTBT, cell viability was less than 10%. The results of this work demonstrate that low band gap D‐A conjugated polymers 1) can be formed into nanoparticles that are stable in aqueous media; 2) are non‐toxic until stimulated by IR light and 3) have a high photothermal efficiency.

  相似文献   

998.
Two highly branched glucose polymers with similar structures—starch and glycogen—have important relations to human health. Slowly digestible and resistant starches have desirable health benefits, including the prevention and alleviation of metabolic diseases and prevention of colon cancer. Glycogen is important in regulating the use of glucose in the body, and diabetic subjects have an anomaly in their glycogen structure compared with that in healthy subjects. This paper reviews the biosynthesis–structure–property relations of these polymers, showing that polymer characterization produces knowledge which can be useful in producing healthier foods and new drug targets aimed at improving glucose storage in diabetic patients. Examples include mathematical modeling to design starch with better nutritional values, the effects of amylose fine structures on starch digestibility, the structure of slowly digested starch collected from in vitro and in vivo digestion, and the mechanism of the formation of glycogen α particles from β particles in healthy subjects. A new method to overcome a current problem in the structural characterization of these polymers using field-flow fractionation is also given, through a technique to calibrate evaporative light scattering detection with starch.
Figure
?  相似文献   
999.
The lipophilicity of thirty-two novel acetylcholinesterase (AChE) inhibitors — 1,2,3,4-tetrahydroacridine and 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives was studied by thin layer chromatography. The analyzed compounds were chromatographed on RP-18, RP-8, RP-2, CN and NH2 stationary phases with dioxane — citric buffer pH 3.0 binary mobile phases containing different proportions of dioxane. RM values for pure water were extrapolated from the linear Soczewiński-Wachtmeister equation and six compounds with known literature log P values were used as reference calibration data set for computation of experimental log P values. The obtained results were compared with computationally calculated partition coefficients values (AlogPs, AClogP, AlogP, MlogP, KOWWIN, XlogP2, XlogP3) by PCA and significant differences between them were observed.  相似文献   
1000.
Elements that enter the aquatic environment may pose a health risk to wildlife and humans. The aims of this study were: to determine how the introduction of activated carbon for a water purification system will improve the quality of the water produced; and to investigate the sorption of metals on activated carbons, including determination of the accumulation, as well as changes in concentrations of elements in carbons. The tests were carried out on three types of activated carbons with different granular structure. All samples were collected from Water Treatment Plant Goczalkowice, Poland. Concentrations of elements were measured using an optical emission spectrometer with inductively coupled plasma. The experiment showed that metals accumulating in the activated carbons during the operation included: Ca, Mn, Zn, and Cu. In each of the three types of carbons, it can distinguish such elements as Ba, Al, Cr, Ni, Ti, which are characterized by irregular accumulation during the operation of the filter. The introduction of carbon sorbent for water treatment largely contributed to improvement in the quality of raw material supplied to customers, mainly with regard to taste and smell, as well as to reduction of basic parameters: color, absorbance in the UV range and oxidability.   相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号