首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   965篇
  免费   9篇
  国内免费   7篇
化学   563篇
晶体学   9篇
力学   34篇
数学   85篇
物理学   290篇
  2021年   13篇
  2020年   19篇
  2019年   10篇
  2018年   7篇
  2017年   7篇
  2016年   11篇
  2014年   7篇
  2013年   42篇
  2012年   33篇
  2011年   41篇
  2010年   15篇
  2009年   27篇
  2008年   34篇
  2007年   38篇
  2006年   41篇
  2005年   28篇
  2004年   29篇
  2003年   35篇
  2002年   21篇
  2001年   20篇
  2000年   35篇
  1999年   22篇
  1998年   20篇
  1997年   21篇
  1996年   16篇
  1995年   14篇
  1994年   17篇
  1993年   16篇
  1992年   16篇
  1991年   12篇
  1990年   12篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   21篇
  1985年   22篇
  1984年   13篇
  1983年   10篇
  1982年   12篇
  1981年   12篇
  1980年   10篇
  1979年   15篇
  1978年   6篇
  1977年   22篇
  1976年   9篇
  1975年   14篇
  1974年   9篇
  1973年   10篇
  1970年   5篇
  1917年   7篇
排序方式: 共有981条查询结果,搜索用时 31 毫秒
261.
We investigated whether the imposition of chronic alcohol in hypertension leads to greater biochemical and cellular abnormalities of the myocardium than those arising in normotension. Fifteen-week-old spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were fed ethanol-containing diets for six weeks. Particular attention was focused on the composition of contractile proteins identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fractional rate of protein synthesis, and synthesis rates relative to RNA (RNA activity) or DNA (cellular efficiency). In addition, myocardial enzymes and adenine nucleotides were measured. In both SHR and WKY rats chronic ethanol caused a general decrease in the contents of all nine contractile proteins with myosin heavy chain predominantly affected. Fractional rates of mixed (i.e., total) and myofibrillary proteins remained unaltered in both WKY rats and SHR, as were cellular efficiencies. The RNA activity was significantly reduced in ethanol-treated SHR but not in WKY rats. In ethanol-treated SHR, cardiac creatine kinase (CK) and malate dehydrogenase (MDH) activities were increased, AMP levels were elevated, whilst ATP levels and the energy charge were reduced. In WKY rats, the only significant change related to increased aspartate aminotransferase activities in response to alcohol feeding. Although there were only subtle differences between the response of the normotensive and hypertensive rats due to ethanol dosage, the reduced ATP levels and increased CK and MDH activities in SHR may reflect a greater susceptibility to ischaemic damage. Reduced contractile protein content, particularly myosin heavy chain, may contribute to contractile defects, a common feature of subclinical and clinical alcoholic cardiomyopathy.  相似文献   
262.
Rates of oxygen absorption and formation of oxidation products were determined in γ-initiated oxidations of thin films of high- and low-density polyethylene, atactic and isotactic polypropylene, and of three ethylene–propylene copolymers. Radiation yields G for O2 absorbed and formation of hydroperoxides depend on dose rates and decrease sharply with increasing ethylene content of the copolymers and moderately with increasing crystallinity of any base polymer. G values for dialkyl peroxide and carbonyl formation, and therefore for chain initiation and termination, do not change much with polymer composition and crystallinity and not at all with dose rates. A few experiments with atactic polypropylene and an amorphous ethylene–propylene copolymer, initiated by di-tert-butylperoxy oxalate, indicate that 37 mole-% of ethylene in the polymer increases the efficiency of initiation and the tendency toward crosslinking.  相似文献   
263.
New synthetic methods for heterocyclic 1,3,2-dithiazolyl (DTA) radicals have been developed, and trends in the molecular spin distributions and electrochemical properties of a series of DTA radicals are reported. The crystal structures of [1,2,5]thiadiazolo[3,4-f][1,3,2]benzodithiazol-2-yl (TBDTA) and [1,3,2]pyrazinodithiazol-2-yl (PDTA) have been determined. The structure of TBDTA (at 293 and 95 K) contains two molecules in the asymmetric unit, each of which generates pi-stacked arrays, one consisting of antiparallel chains of centrosymmetrically associated dimers, the other comprising parallel chains of unassociated radicals. The structure of PDTA (at 293 and 95 K) is simpler, consisting of slipped stacks of pi-dimers. Variable-temperature magnetic susceptibility (chi(P)) measurements on TBDTA indicate essentially paramagnetic behavior for the unassociated radical pi-stacks over the range 5-400 K. By contrast PDTA is diamagnetic at all temperatures below 300 K, but between 300 and 350 K the value of chi(P) follows a sharp and well-defined hysteresis loop, with T(C) downward arrow = 297 K and T(C) upward arrow = 343 K. These features are symptomatic of a regime of bistability involving the observed low temperature pi-dimer structure and a putative high-temperature radical pi-stack. A mechanism for the interconversion of the two phases of PDTA and related structures is proposed in which hysteretic behavior arises from cooperative effects associated with the breaking and making of a lattice-wide network of intermolecular S- - -N' and/or S- - -S' interactions.  相似文献   
264.
The chiroptical properties of dissymmetric cyclopentanedione, 3-methylcyclopentane-1,2-dione, and glyoxal structures are examined on a theoretical model in which the electronic wave functions are obtained from semiempirical all-valence-shell molecular orbital calculations. Excited state wave functions are constructed in the virtual orbital-configuration interaction approximation. The rotatory strengths, dipole strengths, oscillator strengths, and dissymmetry factors of the lower energy singletsinglet transitions in eleven cyclopentanedione and ten glyoxal structures are calculated and reported. The signs and relative magnitudes of the rotatory strengths associated with the two lowest energy singlet transitions are found to be extraordinarily sensitive to ring substituents and ring conformational parameters as well as to inherent chirality within the -dicarbonyl moiety of the cyclopentanedione structures. Vicinal effects play a significant role in determining the signs and magnitudes of the electronic rotatory strengths. For a given configurational isomer of an inherently dissymmetric -dicarbonyl group (i.e., P or M), the signs of the electronic rotatory strength of the lowest energy transition in glyoxal and in cyclopentanedione are opposite. This result suggests that cisoid glyoxal structures may not be useful models for the chiroptical properties of cyclic -diketone systems with cisoid dicarbonyl moieties.This work was supported in part by a grant from the Petroleum Research Fund administered by the American Chemical Society, the Camille and Henry Dreyfus Foundation, and a computing grant from the University of Virginia Computer Science Center.  相似文献   
265.
The reaction of glycidic amides with various functionalized nitriles to afford norstatine analogs in a regio- and diastereoselective fashion (43-99% yield) is described. Utilizing this chemistry, a 20 membered solution phase library was prepared in two steps featuring three points of diversity.  相似文献   
266.
A variety of metalated tosylhydrazone salts derived from benzaldehyde have been prepared and were reacted with benzaldehyde in the presence of tetrahydrothiophene (THT) (20 mol %) and Rh(2)(OAc)(4) (1 mol %) to give stilbene oxide. Of the lithium, sodium, and potassium salts tested, the sodium salt was found to give the highest yield and selectivity. This study was extended to a wide variety of aromatic, heteroaromatic, aliphatic, alpha,beta-unsaturated, and acetylenic aldehydes and to ketones. On the whole, high yields of epoxides with moderate to very high diastereoselectivities were observed. A broad range of tosylhydrazone salts derived from aromatic, heteroaromatic, and alpha,beta-unsaturated aldehydes was also examined using the same protocol in reactions with benzaldehyde, and again, good yields and high diastereoselectivities were observed in most cases. Thus, a general process for the in situ generation of diazo compounds from tosylhydrazone sodium salts has been established and applied in sulfur-ylide mediated epoxidation reactions. The chiral, camphor-derived, [2.2.1] bicyclic sulfide 7 was employed (at 5-20 mol % loading) to render the above processes asymmetric with a range of carbonyl compounds and tosylhydrazone sodium salts. Benzaldehyde tosylhydrazone sodium salt gave enantioselectivities of 91 +/- 3% ee and high levels of diastereoselectivity with a range of aldehydes. However, tosylhydrazone salts derived from a range of carbonyl compounds gave more variable selectivities. Although those salts derived from electron-rich or neutral aldehydes gave high enantioselectivities, those derived from electron-deficient or hindered aromatic aldehydes gave somewhat reduced enantioselectivities. Using alpha,beta-unsaturated hydrazones, chiral sulfide 7 gave epoxides with high diastereoselectivities, but only moderate yields were achieved (12-56%) with varying degrees of enantioselectivity. A study of solvent effects showed that, while the impact on enantioselectivity was small, the efficiency of diazo compound generation was influenced, and CH(3)CN and 1,4-dioxane emerged as the optimum solvents. A general rationalization of the factors that influence both relative and absolute stereochemistry for all of the different substrates is provided. Reversibility in formation of the betaine intermediate is an important issue in the control of diastereoselectivity. Hence, where low diastereocontrol was observed, the results have been rationalized in terms of the factors that contribute to the reduced reversion of the syn betaine back to the original starting materials. The enantioselectivity is governed by ylide conformation, facial selectivity in the ylide reaction, and, again, the degree of reversibility in betaine formation. From experimental evidence and calculations, it has been shown that sulfide 7 gives almost complete control of facial selectivity, and, hence, it is the ylide conformation and degree of reversibility that are responsible for the enantioselectivity observed. A simple test has been developed to ascertain whether the reduced enantioselectivity observed in particular cases is due to poor control in ylide conformation or due to partial reversibility in the formation of the betaine.  相似文献   
267.
The molecular structures of NbOBr(3), NbSCl(3), and NbSBr(3) have been determined by gas-phase electron diffraction (GED) at nozzle-tip temperatures of 250 degrees C, taking into account the possible presence of NbOCl(3) as a contaminant in the NbSCl(3) sample and NbOBr(3) in the NbSBr(3) sample. The experimental data are consistent with trigonal-pyramidal molecules having C(3)(v)() symmetry. Infrared spectra of molecules trapped in argon or nitrogen matrices were recorded and exhibit the characteristic fundamental stretching modes for C(3)(v)() species. Well resolved isotopic fine structure ((35)Cl and (37)Cl) was observed for NbSCl(3), and for NbOCl(3) which occurred as an impurity in the NbSCl(3) spectra. Quantum mechanical calculations of the structures and vibrational frequencies of the four YNbX(3) molecules (Y = O, S; X = Cl, Br) were carried out at several levels of theory, most importantly B3LYP DFT with either the Stuttgart RSC ECP or Hay-Wadt (n + 1) ECP VDZ basis set for Nb and the 6-311G basis set for the nonmetal atoms. Theoretical values for the bond lengths are 0.01-0.04 A longer than the experimental ones of type r(a), in accord with general experience, but the bond angles with theoretical minus experimental differences of only 1.0-1.5 degrees are notably accurate. Symmetrized force fields were also calculated. The experimental bond lengths (r(g)/A) and angles ( 90 degree angle (alpha)()/deg) with estimated 2sigma uncertainties from GED are as follows. NbOBr(3): r(Nb=O) = 1.694(7), r(Nb-Br) = 2.429(2), 90 degree angle (O=Nb-Br) = 107.3(5), 90 degree angle (Br-Nb-Br) = 111.5(5). NbSBr(3): r(Nb=S) = 2.134(10), r(Nb-Br) = 2.408(4), 90 degree angle (S=Nb-Br) = 106.6(7), 90 degree angle (Br-Nb-Br) = 112.2(6). NbSCl(3): r(Nb=S) = 2.120(10),r(Nb-Cl) = 2.271(6), 90 degree angle (S=Nb-Cl) = 107.8(12), 90 degree angle (Cl-Nb-Cl) = 111.1(11).  相似文献   
268.
Monochlorogallane, synthesized by the metathesis of gallium(III) chloride with an excess of trimethylsilane at ca. 250 K, has been characterized by chemical analysis, by its IR, Raman, and 1H NMR spectra, and by the products of its reaction with trimethylamine. The vibrational spectra of the vapor species isolated in solid Ar, N2, or CH4 matrixes at ca. 12 K imply the presence of only one species, viz. the dimer with an equilibrium structure conforming to D2h symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements augmented by the results of ab initio molecular orbital calculations. An equilibrium structure with D2h symmetry has been assumed in the analysis of the electron diffraction pattern. However, as the molecule has a very low frequency Ga(mu-Cl)2Ga ring-puckering mode, a dynamic model was used to describe it with the aid of a set of pseudoconformers spaced at even intervals (deltadelta = 5 degrees, deltamax, = 20 delta) around the ring-puckering angle delta and Boltzmann-weighted according to a quartic potential V(delta) = V4delta4 + V2delta2. The differences in bond distances and angles between the different pseudoconformers were constrained to the values derived from the ab initio calculations employing second-order Moller-Plesset (MP2) methods (with all the electrons included in the correlation calculations) and a 6-311G(d) basis set. The results for the weighted average of the principal distances (ralpha) and angles (相似文献   
269.
The chiroptical properties associated with then* (singlet-singlet) transitions in dissymmetric barbituric acid derivatives are examined on the basis of two theoretical models. The lower singlet excited states of unsubstituted and alkyl substituted barbituric acids are calculated on the semi-empirical CNDO/S-CI molecular orbital model, and the spectroscopic properties associated with transitions to these states are computed. In the structures we examined, threen* transitions are found at λ>220 nm, two of which are nearly degenerate. Each of these transitions is computed to be strongly magnetic dipole allowed and to be forbidden or very weak (depending upon the exact symmetry and geometry of the trioxopyrimidine moiety) in electric dipole radiation. Contributions from chiral distortions within the trioxopyrimidine chromophoric system to the rotatory strengths of the three lowest energyn* transitions are calculated directly from wave functions obtained by the CNDO/S-CI method. Contributions to then* rotatory strengths arising from “vicinal” interactions between the trioxopyrimidine chromophore and asymmetric substituent groups are calculated by a perturbation method based on an independent systems representation of the optically active compounds. Various spectra-structure relationships are considered and correlations between experimental data and theoretically calculated results are examined.  相似文献   
270.
Sulfur ylides R(2)S(+)-C(-)HR' react with aldehydes R' '-CHO to form epoxides, predominantly as the trans isomers, in a synthetically useful reaction which is increasingly used in its asymmetric variant with chiral sulfides. The mechanisms of the "model" reaction (R = Me, R' = R' ' = H) and the reaction forming stilbene oxide (R = Me, R' = R' ' = Ph) have been studied in detail using density functional theory, the B3LYP density functional, and flexible basis sets. It has been shown that for this reaction involving highly polar intermediates, continuum solvation models need to be used throughout to obtain reasonable results. For the reaction of benzaldehyde with dimethylsulfonium benzylide, the key steps are shown to be quasi [2 + 2] addition of the ylide to the aldehyde to form a betaine R'-CH(S(+)Me(2))-CH(O(-))-R' ' in which the charged groups are gauche to one another, and torsional rotation around the C-C single bond of the betaine to form its rotamer with the two charged groups anti. The final step, elimination of sulfide from this second rotamer of the betaine, is found to be facile. In the case of the anti pathway, leading to trans-stilbene epoxide, the initial addition is found to be rate-determining, whereas for the diastereomeric syn pathway, leading to the cis-epoxide, it is instead the torsional rotation which is slowest. These results are in excellent agreement with experiment, unlike previous computational work. The unexpected and apparently unprecedented (for C-C bond-forming reactions) importance of the torsional rotation step, especially in the syn case, is due to the fact that all the barriers involved are low-lying. This novel picture of the mechanism provides a sound basis for the future development of chiral sulfides for enantioselective epoxide synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号