首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32436篇
  免费   1083篇
  国内免费   30篇
化学   22204篇
晶体学   232篇
力学   601篇
数学   4549篇
物理学   5963篇
  2023年   269篇
  2022年   228篇
  2021年   399篇
  2020年   562篇
  2019年   506篇
  2018年   704篇
  2017年   658篇
  2016年   1256篇
  2015年   1014篇
  2014年   1024篇
  2013年   2155篇
  2012年   2374篇
  2011年   2530篇
  2010年   1438篇
  2009年   1152篇
  2008年   2088篇
  2007年   2058篇
  2006年   1804篇
  2005年   1600篇
  2004年   1313篇
  2003年   1023篇
  2002年   904篇
  2001年   668篇
  2000年   565篇
  1999年   435篇
  1998年   303篇
  1997年   220篇
  1996年   342篇
  1995年   235篇
  1994年   224篇
  1993年   269篇
  1992年   244篇
  1991年   160篇
  1990年   143篇
  1989年   130篇
  1988年   123篇
  1987年   124篇
  1986年   118篇
  1985年   185篇
  1984年   157篇
  1983年   130篇
  1982年   111篇
  1981年   106篇
  1980年   76篇
  1979年   96篇
  1978年   86篇
  1977年   75篇
  1976年   78篇
  1975年   75篇
  1973年   84篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
As an emerging member of the graphene family, structurally defined graphene nanoribbons (GNRs) have shown promising applications in various fields. The evaluation of the degradability of GNRs is particularly important for assessing the persistence level and risk of these materials in living organisms and the environment. However, there is a void in the study of the degradation of GNRs. Here, we report the degradation behavior of GNRs in the presence of human myeloperoxidase (hMPO) or treated with the photo-Fenton (PF) reaction. With the assistance of potassium hydroxide or imidazole, which facilitates the dispersion of GNRs in the aqueous solution, GNRs underwent only partial degradation after 25-hour incubation with hMPO, while, the PF reaction degraded GNRs almost completely after 120 hours. These results indicate that structurally precise GNRs can be efficiently degraded under suitable conditions, providing more opportunities for future applications in different fields.  相似文献   
992.
The current COVID-19 pandemic has a tremendous impact on daily life world-wide. Despite the ability to dampen the spread of SARS-CoV-2, the causative agent of the diseases, through restrictive interventions, it is believed that only effective vaccines will provide sufficient control over the disease and revert societal live back to normal. At present, a double-digit number of efforts are devoted to the development of a vaccine against COVID-19. Here, we provide an overview of these (pre)clinical efforts and provide background information on the technologies behind these vaccines. In addition, we discuss potential hurdles that need to be addressed prior to mass scale clinical translation of successful vaccine candidates.  相似文献   
993.
3D microstructures in pure poly(dimethylsiloxane) (PDMS) and PDMS with embedded Au nanoparticles were prepared by ion beam lithography without any further etching. Two mega-electron volts helium and 10 MeV oxygen ions were used for ion microstructuring. Parallel lines of 1 mm in length and 10 μm in thickness were fabricated for investigation of the effect of the nanoparticles presence in the polymer on the surface morphology of the created microstructures. The created microstructures were checked by optical microscope. Infrared (IR) spectrometry was used to study the effect of the ions type and fluence on the chemical changes of the material. Atomic force microscopy was used for the fine detail study as well as for checking the microstructure quality. Analysis revealed an increased radiation resistance of the nanocomposite compared to the pure PDMS. Shrinkage is proportional to the fluence, but the maximum value for both materials is limited by saturation. 3D microstructure in modified PDMS obtained at the same irradiation condition as pure PDMS is characterized by its smaller height. Obtaining the microstructure in nanocomposite of the same height as in pure PDMS by increasing the fluence can be impossible due to saturation of shrinkage and/or radiation-induced heating of the material.  相似文献   
994.
Aminoglycosides are a relevant class of antibiotics widely used by medics and veterinaries. There are a variety of reasons that make their determination relevant, such as quality control, environment and food contamination assessment, drug-release studies, among others. The lack of a chromophore makes aminoglycoside spectrophotometric detection particularly challenging, often requiring derivatization. In this work, an indirect detection method, making use of imidazole as a probe, applying CZE was successfully tested. It did not require derivatization, which simplified the sample preparation. Suitable figures of merit were obtained; recoveries between 95 and 105%, adequate repeatability and precision, correlation coefficients (r) above 0.998, and limits of detection (LODs) of 3.2 and 11 mg/L for gentamicin and paromomycin, respectively. As a proof-of-concept, it was also applied in a simple controlled release experiment that was well fitted using the Hill equation.  相似文献   
995.
Advances to the distributed, multi-core and fully cross-platform QuBiLS-MIDAS software v2.0 ( http://tomocomd.com/qubils-midas ) are reported in this article since the v1.0 release. The QuBiLS-MIDAS software is the only one that computes atom-pair and alignment-free geometrical MDs (3D-MDs) from several distance metrics other than the Euclidean distance, as well as alignment-free 3D-MDs that codify structural information regarding the relations among three and four atoms of a molecule. The most recent features added to the QuBiLS-MIDAS software v2.0 are related (a) to the calculation of atomic weightings from indices based on the vertex-degree invariant (e.g., Alikhanidi index); (b) to consider central chirality during the molecular encoding; (c) to use measures based on clustering methods and statistical functions to codify structural information among more than two atoms; (d) to the use of a novel method based on fuzzy membership functions to spherically truncate inter-atomic relations; and (e) to the use of weighted and fuzzy aggregation operators to compute global 3D-MDs according to the importance and/or interrelation of the atoms of a molecule during the molecular encoding. Moreover, a novel module to compute QuBiLS-MIDAS 3D-MDs from their headings was also developed. This module can be used either by the graphical user interface or by means of the software library. By using the library, both the predictive models built with the QuBiLS-MIDAS 3D-MDs and the QuBiLS-MIDAS 3D-MDs calculation can be embedded in other tools. A set of predefined QuBiLS-MIDAS 3D-MDs with high information content and low redundancy on a set comprised of 20,469 compounds is also provided to be employed in further cheminformatics tasks. This set of predefined 3D-MDs evidenced better performance than all the universe of Dragon (v5.5) and PaDEL 0D-to-3D MDs in variability studies, whereas a linear independence study proved that these QuBiLS-MIDAS 3D-MDs codify chemical information orthogonal to the Dragon 0D-to-3D MDs. This set of predefined 3D-MDs would be periodically updated as long as new results be achieved. In general, this report highlights our continued efforts to provide a better tool for a most suitable characterization of compounds, and in this way, to contribute to obtaining better outcomes in future applications.  相似文献   
996.
Quantum chemical calculations were used to study the mechanism of Diels-Alder reactions involving chiral anthracenes as dienes and a series of dienophiles. The reaction force analysis was employed to obtain a detailed scrutiny of the reaction mechanisms, it has been found that thermodynamics and kinetics of the reactions are quite consistent: the lower the activation energy, the lower the reaction energy, thus following the Bell-Evans-Polanyi principle. It has been found that activation energies are mostly due to structural rearrangements that in most cases represented more than 70% of the activation energy. Electronic activity mostly due to changes in σ and π bonding were revealed by the reaction electronic flux (REF), this property helps identify whether changes on σ or π bonding drive the reaction. Additionally, new global indexes describing the behavior of the electronic activity were introduced and then used to classify the reactions in terms of the spontaneity of their electronic activity. Local natural bond order electronic population analysis was used to check consistency with global REF through the characterization of specific changes in the electronic density that might be responsible for the activity already detected by the REF. Results show that reactions involving acetoxy lactones are driven by spontaneous electronic activity coming from bond forming/strengthening processes; in the case of maleic anhydrides and maleimides it appears that both spontaneous and non-spontaneous electronic activity are quite active in driving the reactions.  相似文献   
997.
Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18 , 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih). The strongest HBs within H2O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2O clusters.  相似文献   
998.
Reduction of CO2 to CO and H2O is a two electron/two proton process. For this process, multinuclear complexes offer advantages by concentrating reduction equivalents more efficiently than mononuclear systems. We present novel complexes with [Re(η6-C6H6)2]+ as scaffold conjugated to one or two catalytically active [Ru(dmbpy)(CO)2Cl2] subunits (dmbpy=5,5′-dimethyl-2,2′-bipyridine). The [Re(η6-C6H6)2]+ scaffold was chosen due to its very high photo- and chemical stability, as well as the multiple degrees of freedom it offers for any conjugated functionalities. High efficiency and selectivity for the reduction of CO2 to CO (over H2 or HCOOH) is reported. TONs and TOFs were found to be comparable or higher than for the catalyst subunit without the rhenium framework. Cooperativity in photo- and electrocatalysis is observed for the complex comprising two catalytic subunits. The synergistic communication between the two catalytic subunits is responsible for the observed enhancement in both photo- and electrocatalytic performance. Confirmation of electronic communication between the two [Ru(dmbpy)(CO)2Cl2] subunits as well as the elucidation of a possible mechanism was supported by electrochemistry, IR-spectroelectrochemistry and DFT studies.  相似文献   
999.
Photodynamic procedures have been used in many applications, ranging from cancer treatment to microorganism inactivation. Photodynamic reactions start with the activation of a photosensitizing molecule with light, leading to the production of cytotoxic molecules that promote cell death. However, establishing the correct light and photosensitizer dosimetry for a broadband light source remains challenging. In this study, we proposed a theoretical mathematical model for the photodegradation of protoporphyrin IX (PpIX), when irradiated by multi-wavelength light sources. The theoretical model predicts the experimental photobleaching (temporal change in PpIX concentration) of PpIX for different light sources. We showed that photobleaching occurs independently of the light source wavelengths but instead depends only on the number of absorbed photons. The model presented here can be used as an important mathematical approach to better understand current photodynamic therapy protocols and help achieve optimization of the doses delivered.  相似文献   
1000.
The enantiopure synthesis of a truncated tetradenolide is presented. Starting from the versatile Chiron 7,3-lactone-xylofuranose derivative (7,3-LXF), the enantiomerically pure synthesis of the title compound is obtained in six steps with a 40% overall yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号