首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
化学   13篇
力学   8篇
物理学   24篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
  1979年   2篇
排序方式: 共有45条查询结果,搜索用时 500 毫秒
41.
Dynamic MR longitudinal R(1) relaxometry after administration of a gadolinium contrast bolus (Gd-DTPA) has been used for in vivo measurements of the extracellular volume fraction (v) and the capillary permeability (k min(-1)) in rabbit muscles to distinguish between red slow- and white fast-twitch muscle fiber types. For this purpose a protocol imaging sequence has been used which allows fast R(1) measurements during the contrast agent uptake. Physiological tissue parameters, k and v, were obtained by computing procedures assuming a simplified monoexponential plasma model. These were shown to be about twice as large in the slow-twitch semimembranosous proprius muscle (SP), containing 100% oxidative type-I fiber, that in the fast-twitch rectus femorus muscle (RF), containing only 6% type-I fiber type. The capillary permeability has been found to be 0.25 +/- 0.02 min(-1) for the (SP) and 0.10 +/- 0.01 min(-1) for the (RF). Similarly, the extracellular volume fractions were 0.189 +/- 0.015 and 0.082 +/- 0.006 respectively, in close agreement with literature data and experimental results obtained by invasive radionuclide measurements. For the pool of the 10 studied animals, no significant variation among animals was observed in the extracellular volume fraction and the capillary permeability for the different muscle fiber types. The dynamic relaxometry method used is easy to implement on conventional MR imagers and has potential applications in muscle diseases. The method has also potential applications for tissue characterization based on extracellular volume and capillary permeability quantification. In particular, the method can be used for the evaluation of tumors and their responses to therapies.  相似文献   
42.
Change in the atomic surface structure of small coalesced palladium particles is shown by High Resolution Electron Microscopy imaging; these atomic surface restructuration events during observation are induced by the electron beam irradiation. They include atom evaporation from specific crystallite facets, surface diffusion of atoms which consecutively affects the particle morphology especially in the case of multiple-twinned particles and the growth of crystallite parts and resulting strains.  相似文献   
43.
Malo EA  Renou M  Guerrero A 《Talanta》2000,52(3):525-532
In this paper we present analytical studies of the sex pheromone components of the Egyptian armyworm Spodoptera littoralis (Lepidoptera, Noctuidae) by electroantennography (EAG) and coupled gas chromatography-electroantennographic detection (GC-EAD). EAG responses in three different preparations, using an insect's head, an excised antenna and a live insect, have been recorded. EAG depolarizations of live insects were significantly higher than those elicited by the insect's head or the excised antenna. The responses were dose-dependent. Live insects also allowed regular pheromone stimulations for 40 min with only 38% decrease of the EAG initial depolarization. The synthetic pheromone blend elicited the highest EAG activity (2.0+/-0.3 mV), followed by the major compound (Z,E)-9,11-tetradecadienyl acetate (I) (1.54+/-0.1mV), and the minor components (Z)-9-tetradecenyl acetate (II), (E)-11-tetradecenyl acetate (III), tetradecyl acetate (IV) and (Z)-11-tetradecenyl acetate (V) (1.21-1.32 mV range). (Z,E)-9,12-tetradecadienyl acetate (VI), although not present in the pheromone blend of our strain, also showed an EAG activity (1.32+/-0.09 mV) similar to that of the monoenic components. GC-EAD responses confirmed the composition of the sex pheromone blend, the major response being elicited by the main component I followed by the other minor compounds II-V. The new dienic compound found in the female pheromone gland, (E,E)-10,12-tetradecadienyl acetate (VII), was not electrophysiologically active. Regarding sensitivity, the minimum amount detectable to elicit an antennal response in our GC-EAD system was 15 pg of the major component. In our system, which was built with cheap and easily available materials, no cooling of the effluent at the outlet of the chromatographic column is required.  相似文献   
44.
This work investigates the acoustical properties of a multilayer porous material in which periodic inclusions are embedded. The material is assumed to be backed by a rigid wall. Most of the studies performed in this field used the multipole method and are limited to circular shape inclusions. Here, a mode matching approach, more convenient for a layered system, is adopted. The inclusions can be in the form of rigid scatterers of an arbitrary shape, in the form of an air-filled cavity or in the form of a porous medium with contrasting properties. The computational approach is validated on simple geometries against other numerical schemes and with experimental results obtained in an anechoic room on a rigid grating embedded in a porous material made of 2 mm glass beads. The method is used to study the acoustic absorption behavior of this class of materials in the low frequency range and at a range of angles of incidence.  相似文献   
45.
A scale-by-scale kinetic energy budget equation is developed for inhomogeneous and anisotropic turbulence. This equation reduces to Yaglom’s 4/3 law, under more strict assumptions. Experimental data obtained in the impact region of two opposed jets, in a multiple-opposed-jets flow, are used to partially validate the analytical development and to better characterize this complex flow. It is shown that the energy transfer is mainly performed in planes perpendicular to the axisymmetry axis, whereas it is strongly inhibited along the axisymmetry direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号