首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
化学   54篇
数学   1篇
物理学   14篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   15篇
  2005年   3篇
  2004年   1篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
31.
Herein we report a group of five planar chiral molecules as photon‐mode chiral switches for the reversible control of the self‐assembled superstructures of doped chiral nematic liquid crystals. The chiral switches are composed of an asymmetrically substituted aromatic moiety and a photoisomerizing azobenzene unit connected in a cyclic manner through methylene spacers of varying lengths. All the molecules show conformational restriction in the rotation of the asymmetrically substituted aromatic moiety in both the E and Z states of the azobenzene units resulting in planar chirality with separable enantiomers. Our newly synthesized compounds in pure enantiomeric form show high helical twisting power (HTP) in addition to an improved change in HTP between the E and Z states. The molecule with a diphenylnaphthalene unit shows the highest ever known initial helical twisting power among chiral dopants with planar chirality. In addition to the reversible tuning of reflection colors, we employed the enantiomers of these five compounds in combination with four nematic liquid crystalline hosts to study their properties as molecular machines; the change in HTP of the chiral dopant upon photoisomerization induces rotation of the texture of the liquid crystal surfaces. Importantly, this study has revealed a linear dependence of the ratio of the difference between HTPs before and after irradiation against the absolute value of the initial HTP, not the absolute value of the change in helical twisting power between two states, on the angle of rotation of micro‐objects on chiral nematic liquid crystalline films. This study has also revealed that a change in irradiation intensity does not affect the maximum angle of rotation, but it does affect the speed of rotational reorganization of the cholesteric helix.  相似文献   
32.
Linear π‐conjugated oligomers are known to form organogels through noncovalent interactions. Herein, we report the effect of π‐repeat units on the gelation and morphological properties of three different oligo(p‐phenylene‐ethynylene)s: OPE3 , OPE5 , and OPE7 . All of these molecules form fluorescent gels in nonpolar solvents at low critical gel concentrations, thereby resulting in a blue gel for OPE3 , a green gel for OPE5 , and a greenish yellow gel for OPE7 . The molecule–molecule and molecule–substrate interactions in these OPEs are strongly influenced by the conjugation length of the molecules. Silicon wafer suppresses substrate–molecule interactions whereas a mica surface facilitates such interactions. At lower concentrations, OPE3 formed vesicular assemblies and OPE5 gave entangled fibers, whereas OPE7 resulted in spiral assemblies on a mica surface. At higher concentrations, OPE3 and OPE5 resulted in super‐bundles of fibers and flowerlike short‐fiber agglomerates when different conditions were applied. The number of polymorphic structures increases on increasing the conjugation length, as seen in the case of OPE7 with n=5, which resulted in a variety of exotic structures, the formation of which could be controlled by varying the substrate, concentration, and humidity.  相似文献   
33.
Crafting of chiral plasmonic nanostructures is extremely important and challenging. DNA‐directed organization of nanoparticle on a chiral template is the most appealing strategy for this purpose. Herein, we report a supramolecular approach for the design of DNA‐decorated, helically twisted nanoribbons through the amphiphilicity‐driven self‐assembly of a new class of amphiphiles derived from DNA and hexaphenylbenzene (HPB). The ribbons are self‐assembled in a lamellar fashion through the hydrophobic interactions of HPB. The transfer of molecular chirality of ssDNA into the HPB core results in the bias of one of the chiral propeller conformations for HPB and induces a helical twist into the lamellar packing, and leads to the formation of DNA‐wrapped nanoribbons with M‐helicity. The potential of the ribbon to act as a reversible template for the 1D chiral organization of plasmonic nanomaterials through DNA hybridization is demonstrated.  相似文献   
34.
Crafting of chiral plasmonic nanostructures is extremely important and challenging. DNA‐directed organization of nanoparticle on a chiral template is the most appealing strategy for this purpose. Herein, we report a supramolecular approach for the design of DNA‐decorated, helically twisted nanoribbons through the amphiphilicity‐driven self‐assembly of a new class of amphiphiles derived from DNA and hexaphenylbenzene (HPB). The ribbons are self‐assembled in a lamellar fashion through the hydrophobic interactions of HPB. The transfer of molecular chirality of ssDNA into the HPB core results in the bias of one of the chiral propeller conformations for HPB and induces a helical twist into the lamellar packing, and leads to the formation of DNA‐wrapped nanoribbons with M‐helicity. The potential of the ribbon to act as a reversible template for the 1D chiral organization of plasmonic nanomaterials through DNA hybridization is demonstrated.  相似文献   
35.
The synthesis of fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?CH)}3] ( 10 ), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?C‐trans‐[RuCl(dppe)2])}3] ( 11 ) is described. Complex 10 is available from the two‐step formation of iodo‐functionalized fac‐tris[2‐(4‐iodophenyl)pyridine]iridium(III) ( 6 ), followed by ligand‐centered palladium‐catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2‐(4‐iodophenyl)pyridine‐N,C1′](μ‐dichloro)diiridium 5 , 6 , fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CH)}3] ( 8 ), and 10 confirm ligand‐centered derivatization of the tris(2‐phenylpyridine)iridium unit. Electrochemical studies reveal two ( 5 ) or one ( 6 – 10 ) Ir‐centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru‐centered and Ir‐centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′‐NC5H4‐2‐C6H4‐2)3. Ligand‐centered π–π* transitions characteristic of the Ir(N,C′‐NC5H4‐2‐C6H4‐2)3 unit red‐shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6 , 7 , 9 , and 11 reveal the appearance in each case of new low‐energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11 , by the appearance of a low‐energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6 – 10 reveal a red‐shift upon alkynyl group introduction and arylalkynyl π‐system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11 . Third‐order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two‐photon absorption, and results from the latter being consistent with primarily excited‐state absorption.  相似文献   
36.
Electrical Properties of Sol-Gel Processed Amorphous BaTiO3 Thin Films   总被引:1,自引:0,他引:1  
BaTiO3 thin films were prepared on single crystal silicon (1 0 0) and platinum substrates by sol-gel technique. Amorphous films with thickness uniformity were obtained by spinning the solution at 3000 rpm for 30 s and by post-deposition annealing at 400°C. The films exhibited good dielectric and insulating properties. The dielectric constant and dissipation factor at a frequency of 100 kHz were 17 and 0.20, respectively, for 1400 Å thick film on platinum substrate (MIM). The corresponding values were 16 and 0.015 for films on Si (MIS). Dielectric properties were also studied as functions of frequency and voltage. The C-V curve for MIS structure exhibited a hysteresis. The density of interface states recharged during the bias cycle in hysteresis measurement was estimated to be of the order of 2.10 × 1011 cm–2 and total oxide charge density was about 4.28 × 1011 cm–2. I-V measurements were performed on films of different thicknesses. The leakage current densities at 5 V for the films having thicknesses 1400 and 2800 Å were 0.86 and 0.11 A/cm2 respectively. The conduction mechanism is found to be Poole-Frenkel and Schottky mechanisms at low and high fields, respectively.  相似文献   
37.
The non-emissive supramolecular assembly of urea end-capped oligo(p-phenylenevinylene) flourophores turned strongly emissive in the presence of tetrabutylammonium flouride which has implications in the anion controlled design of supramolecular architectures with tunable emission properties.  相似文献   
38.
39.
2-(4-Amino-2-arylaminothiazol-5-oyl)benzothiazoles, as the novel analogs of the cytotoxic marine alkaloid dendrodoine, are synthesized and characterized by elemental analysis, IR, NMR and mass spectral data. The thiourea derivatives provide four ring atoms for the thiazole ring construction and thus act as [C–N–C–S] synthons. The remaining carbon of the thiazole is sourced from 2-(2-bromoacetyl)benzothiazoles. This [4+1] heterocyclization reaction is adopted for the synthesis of novel benzothiazole derivatives. The presence of two signals in the 1H NMR spectrum arising from the NH2 hydrogens shows that the two hydrogens are not exchanging rapidly on the chemical shift time scale and they are in two different chemical environments due to H-bonding.  相似文献   
40.
A DNA‐based covalent versus a non‐covalent approach is demonstrated to control the optical, chirooptical and higher order structures of Nile red ( Nr ) aggregation. Dynamic light scattering and TEM studies revealed that in aqueous media Nr ‐modified 2′‐deoxyuridine aggregates through the co‐operative effect of various non‐covalent interactions including the hydrogen bonding ability of the nucleoside and sugar moieties and the π‐stacking tendency of the highly hydrophobic dye. This results in the formation of optically active nanovesicles. A left‐handed helically twisted H‐type packing of the dye is observed in the bilayer of the vesicle as evidenced from the optical and chirooptical studies. On the other hand, a left‐handed helically twisted J‐type packing in vesicles was obtained from a non‐polar solvent (toluene). Even though the primary stacking interaction of the dye aggregates transformed from H→J while going from aqueous to non‐polar media, the induced supramolecular chirality of the aggregates remained the same (left‐handed). Circular dichroism studies of DNA that contained several synthetically incorporated and covalently attached Nr ‐modified nucleosides revealed the formation of helically stacked H‐aggregates of Nr but—in comparison to the noncovalent aggregates—an inversed chirality (right‐handed). This self‐assembly propensity difference can, in principle, be applied to other hydrophobic dyes and chromophores and thus open a DNA‐based approach to modulate the primary stacking interactions and supramolecular chirality of dye aggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号