首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   14篇
  国内免费   3篇
化学   513篇
晶体学   3篇
力学   9篇
数学   111篇
物理学   168篇
  2020年   7篇
  2019年   9篇
  2018年   5篇
  2016年   7篇
  2015年   8篇
  2014年   11篇
  2013年   27篇
  2012年   27篇
  2011年   27篇
  2010年   23篇
  2009年   16篇
  2008年   49篇
  2007年   37篇
  2006年   41篇
  2005年   19篇
  2004年   33篇
  2003年   27篇
  2002年   22篇
  2001年   26篇
  2000年   18篇
  1999年   12篇
  1998年   7篇
  1997年   16篇
  1996年   18篇
  1995年   11篇
  1994年   16篇
  1993年   11篇
  1992年   13篇
  1991年   16篇
  1990年   14篇
  1989年   18篇
  1988年   12篇
  1987年   10篇
  1986年   11篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   10篇
  1981年   6篇
  1978年   7篇
  1977年   9篇
  1976年   8篇
  1975年   11篇
  1974年   13篇
  1973年   14篇
  1972年   11篇
  1971年   11篇
  1970年   4篇
  1969年   5篇
  1934年   5篇
排序方式: 共有804条查询结果,搜索用时 62 毫秒
121.
The infrared (IR)-vacuum ultraviolet (VUV)-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectrum for C2H4(X1A(g), v11 = 1, N'(Ka'Kc') = 3(03)) in the VUV range of 83,000-84,800 cm(-1) obtained using a single mode infrared laser revealed 24 rotationally resolved vibrational bands for the ion C2H4(+)(X2B(3u)) ground state. The frequencies and symmetry of the vibrational bands thus determined, together with the anharmonic frequency predictions calculated at the CCSD(T)/aug-cc-pVQZ level, have allowed the unambiguous assignment of these vibrational bands. These bands are mostly combination bands. The measured frequencies of these bands yield the fundamental frequencies for v8+ = 1103 +/- 10 cm(-1) and v10+ = 813 +/- 10 cm(-1) of C2H4(+)(X2B(3u)), which have not been determined previously. The present IR-VUV-PFI-PE study also provides truly rovibrationally selected and resolved state-to-state cross sections for the photoionization transitions C2H4(X1A(g); v11, N'(Ka'Kc')) --> C2H4(+)(X2B(3u); vi+, N+(Ka+Kc+)), where N'(Ka'Kc') denotes the rotational level of C2H4(X1A(g); v11), and vi+ and N+(Ka+Kc+) represent the vibrational and rotational states of the cation.  相似文献   
122.
The competitive substitution of the anion (A(-)) in contact ion pairs of the type [Oct3NH+]B(C6F5)4 (-) by unsaturated hydrocarbons (L) in accordance with the equilibrium Oct3NH+...A(-) + nL right arrow over left arrow [Oct3NH+...Ln]A(-) has been studied in CCl4. On the basis of equilibrium constants, K, and shifts of nuNH to low frequency, it has been established that complexed Oct3NH...+Ln cations with n=1 and 2 are formed and have unidentate and bifurcated N--H+...pi hydrogen bonds, respectively. Bifurcated hydrogen bonds to unsaturated hydrocarbons have not been observed previously. The unsaturated hydrocarbons studied include benzene and methylbenzenes, fused-ring aromatics, alkenes, conjugated dienes, and alkynes. From the magnitude of the redshifts in the N--H stretching frequencies, Delta nuNH, a new scale for ranking the pi basicity of unsaturated hydrocarbons is proposed: fused-ring aromatics相似文献   
123.
Reed JL 《Inorganic chemistry》2008,47(13):5591-5600
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.  相似文献   
124.
The strongest carborane acid, H(CHB11F11), protonates CO2 while traditional mixed Lewis/Brønsted superacids do not. The product is deduced from IR spectroscopy and calculation to be the proton disolvate, H(CO2)2+. The carborane acid H(CHB11F11) is therefore the strongest known acid. The failure of traditional mixed superacids to protonate weak bases such as CO2 can be traced to a competition between the proton and the Lewis acid for the added base. The high protic acidity promised by large absolute values of the Hammett acidity function (H0) is not realized in practice because the basicity of an added base is suppressed by Lewis acid/base adduct formation.  相似文献   
125.
Reversible hydrogen storage under ambient conditions has been identified as a major bottleneck in enabling a future hydrogen economy. Herein, we report an amorphous vanadium(III) alkyl hydride gel that binds hydrogen through the Kubas interaction. The material possesses a gravimetric adsorption capacity of 5.42 wt % H2 at 120 bar and 298 K reversibly at saturation with no loss of capacity after ten cycles. This corresponds to a volumetric capacity of 75.4 kgH2 m?3. Raman experiments at 100 bar confirm that Kubas binding is involved in the adsorption mechanism. The material possesses an enthalpy of H2 adsorption of +0.52 kJ mol?1 H2, as measured directly by calorimetry, and this is practical for use in a vehicles without a complex heat management system.  相似文献   
126.
The synthesis and biological evaluation of a series of novel Dual Aromatase-Sulfatase Inhibitors (DASIs) are described. It is postulated that dual inhibition of the aromatase and steroid sulfatase enzymes, both responsible for the biosynthesis of oestrogens, will be beneficial in the treatment of hormone-dependent breast cancer. The compounds are based upon the Anastrozole aromatase inhibitor template which, while maintaining the haem ligating triazole moiety crucial for enzyme inhibition, was modified to include a phenol sulfamate ester motif, the pharmacophore for potent irreversible steroid sulfatase inhibition. Adaption of a synthetic route to Anastrozole was accomplished via selective radical bromination and substitution reactions to furnish a series of aromatase inhibitory pharmacophores. Linking these fragments to the phenol sulfamate ester moiety employed SN2, Heck and Mitsunobu reactions with phenolic precursors, from where the completed DASIs were achieved via sulfamoylation. In vitro, the lead compound, 11, had a high degree of potency against aromatase (IC50 3.5 nM), comparable with that of Anastrozole (IC50 1.5 nM) whereas, only moderate activity against steroid sulfatase was found. However, in vivo, 11 surprisingly exhibited potent dual inhibition.Compound 11 was modelled into the active site of a homology model of human aromatase and the X-ray crystal structure of steroid sulfatase.  相似文献   
127.
The synthesis and biological evaluation of a series of novel Dual Aromatase-Sulfatase Inhibitors (DASIs) are described. It is postulated that dual inhibition of the aromatase and steroid sulfatase enzymes, both responsible for the biosynthesis of oestrogens, will be beneficial in the treatment of hormone-dependent breast cancer. The compounds are based upon the Anastrozole aromatase inhibitor template which, while maintaining the haem ligating triazole moiety crucial for enzyme inhibition, was modified to include a phenol sulfamate ester motif, the pharmacophore for potent irreversible steroid sulfatase inhibition. Adaption of a synthetic route to Anastrozole was accomplished via selective radical bromination and substitution reactions to furnish a series of inhibitory aromatase pharmacophores. Linking these fragments to the phenol sulfamate ester moiety employed S(N)2, Heck and Mitsunobu reactions with phenolic precursors, from where the completed DASIs were achieved via sulfamoylation. In vitro, the lead compound, 11, had a high degree of potency against aromatase (IC(50) 3.5 nM), comparable with that of Anastrozole (IC(50) 1.5 nM) whereas, only moderate activity against steroid sulfatase was found. However, in vivo, 11 surprisingly exhibited potent dual inhibition. Compound 11 was modelled into the active site of a homology model of human aromatase and the X-ray crystal structure of steroid sulfatase.  相似文献   
128.
Suzuki-Miyaura coupling of 2-bromopyridine 1b with 2-formylphenylboronic acid 2 under standard conditions, gives 2-[4-(2-pyridin-2-yl-benzyl)-pyridin-2-yl]benzoic acid 5b. A similar reaction is observed for 2-bromo-6-methylpyridine 1c. A mechanistic rationale for these unusual observations is suggested.  相似文献   
129.
Two new mono-substituted phenanthroline ligands and their platinum(II) square planar complexes have been prepared; one of the complexes has been shown to induce a high degree of quadruplex DNA stabilisation and to inhibit telomerase.  相似文献   
130.
Preparation and full characterization of the main-group diradical *NSNSC-CNSSN*, 8, the MF6- salt (As, Sb) of radical cation +NSNSC-CNSSN*, 8*+, and the AsF6- salt of the dication +NSNSC-CNSSN+, 82+, are presented. 8, a=6.717 (4), b=11.701(2), c=8.269(3) A, alpha=gamma=90, beta=106.69(3) degrees, monoclinic, space group P21/n, Z=4, T=203 K; 8SbF6, a=6.523(2), b=7.780(2), c=12.012(4) A, alpha=91.994(4), beta=96.716(4), gamma=09.177(4) degrees, triclinic, space group P, Z=2, T=198 K; 8[AsF6]2, a=12.7919(14), b=9.5760(11), c=18.532(2) A, alpha=gamma=90, beta=104.034(2) degrees, monoclinic, space group Pn, Z=6, T=198 K. Preparation of 8MF6 was carried out via a reduction of [CNSNS]2[MF6]2 (M=As, Sb) with either ferrocene or a SbPh3-NBu4Cl mixture. In the solid state, diamagnetic 8SbF6 contains centrosymmetric dimers [8*+]2 linked via two-electron four-centered pi*-pi* interactions with a thermally excited triplet state as detected by electron paramagnetic resonance (EPR). This is the first observation of a triplet excited state for a 7pi 1,2,3,5-dithiadiazolyl radical dimer. The singlet-triplet gap of the [-CNSSN*]2 radical pair was -1800+/-100 cm(-1) (-22+/-1 kJ/mol) with the ZFS components |D|=0.0267(6) cm(-1) and |E|=0.0012(1) cm(-1), corresponding to an in situ dimerization energy of ca. -11 kJ/mol. Cyclic voltammetry measurements of 8[AsF6]2 showed two reversible waves associated with a stepwise reduction of the two isomeric rings [E1/2 (+2/+1)=1.03 V; E1/2 (+1/0)=0.47 V, respectively]. 8MF6 (M=As, Sb) was further reduced to afford the mixed main-group diradical 8, containing two isomeric radical rings. In solution, 8 is thermodynamically unstable with respect to *NSSNC-CNSSN*, but is isolable in the solid state because of its low solubility in SO2. Likewise, 8SbF6, 8 is dimeric, with pi*-pi* interactions between different isomeric rings, and consequently diamagnetic; however, a slight increase in paramagnetism was observed upon grinding [from C=6.5(3)x10(-4) emu.K/mol and temperature-independent paramagnetism (TIP)=1.3(1)x10(-4) emu/mol to C=3.2(1)x10(-3) emu.K/mol and TIP=9.0(1)x10(-4) emu/mol], accompanied by an increase in the lattice-defect S=1/2 sites [from 0.087(1) to 0.43(1)%]. Computational analysis using the multiconfigurational approach [CASSCF(6,6)/6-31G*] indicated that the two-electron multicentered pi*-pi* bonds in [8*+]2 and [8]2 have substantial diradical characters, implying that their ground states are diradicaloid in nature. Our results suggest that the electronic structure of organic-radical ion pairs, for example, [TTF*+]2, [TCNE*-]2, [TCNQ*-]2, [DDQ*-]2, and related pi dimers, can be described in a similar way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号