首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
化学   25篇
物理学   8篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
21.
The structure of the basic iron phosphate rockbridgeite [iron manganese zinc tris­(phosphate) penta­hydroxide] was reinvestigated with special emphasis on the cation distribution deduced from new X‐ray and 57Fe Mössbauer data. Rockbridgeite is orthorhombic, space group Cmcm, and shows three different Fe sites, one with symmetry, another with m symmetry and the third in a general position. One phosphate group has the P atom on a site with m symmetry, while the other has the P atom at a site with mm symmetry. Two Fe sites are fully occupied by ferric iron, while Mn3+ and Fe2+ are situated at a third, principally Fe, site. Structural data, bond‐valence sums and polyhedral distortion parameters suggest a new inter­pretation of the rockbridgeite 57Fe Mössbauer spectrum.  相似文献   
22.
Single crystals of an Li-stuffed, Al- and Ga-stabilized garnet-type solid-state electrolyte material, Li7La3Zr2O12 (LLZO), have been analysed using single-crystal X-ray diffraction to determine the pristine structural state immediately after synthesis via ceramic sintering techniques. Hydrothermal treatment at 150 °C for 28 d induces a phase transition in the Al-stabilized compound from the commonly observed cubic Iad structure to the acentric I3d subtype. LiI ions at the interstitial octahedrally (4 + 2-fold) coordinated 48e site are most easily extracted and AlIII ions order onto the tetrahedral 12a site. Deep hydration induces a distinct depletion of LiI at this site, while the second tetrahedral site, 12b, suffers only minor LiI loss. Charge balance is maintained by the incorporation of HI, which is bonded to an O atom. Hydration of Ga-stabilized LLZO induces similar effects, with complete depletion of LiI at the 48e site. The LiI/HI exchange not only leads to a distinct increase in the unit-cell size, but also alters some bonding topology, which is discussed here.  相似文献   
23.
Cobalt‐doped dicalcium zinc germanate, synthesized by slow cooling from the melt, is monoclinic and has a layered structure, which is different from the modulated melilite‐type structure of Ca2ZnGe2O7. The monoclinic form has two different Ca, one Zn and two Ge sites, and seven independent O‐atom positions; all are in general position 4e of the space group P21/n. The topology of the structure is described and compared with that of Ca2ZnGe1.25Si0.75O7.  相似文献   
24.
Mixed transition metal oxides have emerged as promising electrode materials for electrochemical energy storage and conversion. To optimize the functional electrode properties, synthesis approaches allowing for a systematic tailoring of the materials’ composition, crystal structure and morphology are urgently needed. Here we report on the room-temperature electrodeposition of a ternary oxide based on earth-abundant metals, specifically, the defective cubic spinel ZnMnO3. In this unprecedented approach, ZnO surfaces act as (i) electron source for the interfacial reduction of MnO4 in aqueous solution, (ii) as substrate for epitaxial growth of the deposit and (iii) as Zn precursor for the formation of ZnMnO3. Epitaxial growth of ZnMnO3 on the lateral facets of ZnO nanowires assures effective electronic communication between the electroactive material and the conducting scaffold and gives rise to a pronounced 2-dimensional morphology of the electrodeposit forming – after partial delamination from the substrate – twisted nanosheets. The synthesis strategy shows promise for the direct growth of different mixed transition metal oxides as electroactive phase onto conductive substrates and thus for the fabrication of binder-free nanocomposite electrodes.  相似文献   
25.
The title compound, Ca3ZnGeO2[Ge4O12] (tricalcium zinc germanium dioxide dodecaoxidotetragermanate), adopts a taikanite‐type structure. The tetrahedral [Ge4O12] chain geometry is very similar to that of the silicate chain of taikanite, i.e. BaSr2Mn3+2O2[Si4O12], while the major difference is found parallel to the c axis. In taikanite, Mn3+ octahedra form an infinite zigzag chain, whereas the title compound has a chain of distorted ZnO6 octahedra, which alternates with distorted GeO4 tetrahedra connected to each other via two common edges. Eightfold‐coordinated Ca2+ polyhedra and ZnO6 octahedra form a slab parallel to (001) which alternates with another slab containing the tetrahedrally coordinated Ge sites along the c axis.  相似文献   
26.
The development of all‐solid‐state electrochemical energy storage systems, such as lithium‐ion batteries with solid electrolytes, requires stable, electronically insulating compounds with exceptionally high ionic conductivities. Considering ceramic oxides, garnet‐type LiLaZrO and derivatives, see Zr‐exchanged LiLaZrTaO (LLZTO), have attracted great attention due to its high Li+ ionic conductivity of 10 S cm at ambient temperature. Despite numerous studies focussing on conductivities of powder samples, only few use time‐domain NMR methods to probe Li ion diffusion parameters in single crystals. Here we report on temperature‐variable NMR relaxometry measurements using both laboratory and spin‐lock techniques to probe Li jump rates covering a dynamic time window spanning several decades. Both techniques revealed a consistent picture of correlated Li ion jump diffusion in the single crystal; the data perfectly mirror a modified BPP‐type relaxation response being based on a Lorentzian‐shaped relaxation function. The rates measured could be parameterized with a single set of diffusion parameters. Results from NMR are completely in line with ion transport parameters derived from conductivity spectroscopy.  相似文献   
27.
A new form of Y2Si2O7 (diyttrium heptaoxodisilicate) has been synthesized which is isotypic with thortveitite, Sc2Si2O7, and crystallizes in the centrosymmetric space group C2/m, both at 100 and 280 K. The Y3+ cation occupies a distorted octahedral site, with Y—O bond lengths in the range 2.239 (2)–2.309 (2) Å. The SiO4 tetrahedron is remarkably regular, with Si—O bond lengths in the range 1.619 (2)–1.630 (2) Å. The bridging O atom of the Si2O7 pyrosilicate group shows a large anisotropic displacement perpendicular to the Si—O bond. Changes in lattice and structural parameters upon cooling are small with, however, a distinct decrease of the anisotropic displacement of the briding O atom. Structure solution and refinement in the non‐centrosymmetric space group C2 are possible but do not yield a significantly different structure model. The Si—O—Si bond angle of the isolated Si2O7 groups is 179.2 (1)° at 280 K in C2 and 180° per symmetry in C2/m. The C2/m structure model is favoured.  相似文献   
28.
The structure of the olivine LiInSiO4 (lithium indium silicate) is isotypic with LiScSiO4 and MgMgSiO4 (forsterite). The main differences between the title compound and the divalent–divalent olivines are found for the bond lengths and angles opposite common edges between the tetrahedron and the Li+ and In3+ ion sites. The tetrahedron shares one common edge with the Li+ site and two common edges with the In3+ site. The tetrahedron is distinctly distorted, as are the Li+ and In3+ sites.  相似文献   
29.
The compounds CaFeSi2O6 (hedenbergite), CaNiGe2O6, CaCoGe2O6 and CaMnGe2O6 have been synthesized by hydrothermal or ceramic sintering techniques and were subsequently characterized by SQUID magnetometry and powder neutron diffraction in order to determine the magnetic properties and the spin structure at low temperature. All four compounds reveal the well-known clinopyroxene structure-type with monoclinic symmetry, space group C2/c, Z=4 at all temperatures investigated. Below 35 K hedenbergite shows a ferromagnetic (FM) coupling of spins within the infinite M1 chains of edge-sharing octahedra. This FM coupling dominates an antiferromagnetic (AFM) coupling between neighbouring chains. The magnetic moments lie within the a-c plane and form an angle of 43° with the crystallographic a-axis. Magnetic ordering in CaFeSi2O6 causes significant discontinuities in lattice parameters, Fe-O bond lengths and interatomic Fe-Fe distances through the magnetic phase transition, which could be detected from the Rietveld refinements of powder neutron diffraction data. CaCoGe2O6 and CaNiGe2O6 show magnetic ordering below 18 K, the spin structures are similar to the one in hedenbergite with an FM coupling within and an AFM coupling of spins between the M1 chains. The moments lie within the a-c plane. The paramagnetic Curie temperature, however, decreases from CaFeSi2O6 (+40.2 K) to CaCoGe2O6 (+20.1 K) and CaNiGe2O6 (−13.4 K), suggesting an altered interplay between the concurring AFM and FM interaction in and between the M1 chains. CaMnGe2O6 finally shows an AFM ordering below 11 K. Here the magnetic moments are mainly oriented along the a-axis with a small tilt out from the a-c plane.  相似文献   
30.
Unusually large and good‐quality single crystals of the synthetic trioctahedral mica KFe(Al0.26FeSi3)O10(OH)2 [potassium triiron(II) aluminasilaferrate(III) decaoxide dihy­droxide] have been grown hydro­thermally. X‐ray diffraction data measured at 270 and 100 K have been used to refine the crystal structure, including the positions of the H atoms. This synthetic mica is similar to annite, KFe3AlSi3O10(OH)2, and crystallizes with the same monoclinic C2/m symmetry. No phase transition has been observed down to 100 K. At low temperature, the ditrigonal distortion of the mica structure increases markedly, while the octahedral and tetrahedral bond lengths tend to decrease and increase, respectively. A detailed comparison of structural parameters in various Fe‐rich micas is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号