首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2571篇
  免费   110篇
  国内免费   9篇
化学   1979篇
晶体学   27篇
力学   36篇
数学   300篇
物理学   348篇
  2023年   34篇
  2022年   38篇
  2021年   51篇
  2020年   66篇
  2019年   58篇
  2018年   39篇
  2017年   34篇
  2016年   67篇
  2015年   78篇
  2014年   75篇
  2013年   143篇
  2012年   148篇
  2011年   193篇
  2010年   83篇
  2009年   78篇
  2008年   140篇
  2007年   141篇
  2006年   159篇
  2005年   135篇
  2004年   132篇
  2003年   91篇
  2002年   82篇
  2001年   22篇
  2000年   25篇
  1999年   21篇
  1998年   21篇
  1997年   33篇
  1996年   25篇
  1994年   17篇
  1993年   18篇
  1992年   15篇
  1991年   17篇
  1989年   11篇
  1988年   13篇
  1987年   17篇
  1985年   25篇
  1984年   24篇
  1983年   18篇
  1982年   12篇
  1981年   28篇
  1980年   10篇
  1979年   15篇
  1978年   18篇
  1977年   19篇
  1976年   16篇
  1975年   23篇
  1974年   19篇
  1973年   19篇
  1972年   12篇
  1966年   11篇
排序方式: 共有2690条查询结果,搜索用时 0 毫秒
131.
Photosystem I (PS I) is a robust photosynthetic complex that adeptly captures photons to create a charge-separated state with a quantum efficiency that approaches 1.0. This charge-separated state is stable for approximately 100 ms, and the low-potential reductant that is produced is poised at a redox potential favorable for H2 evolution. PS I has been covalently linked to Pt and Au nanoparticle surfaces by 1,6-hexanedithiol which serves as a molecular wire to both connect PS I to the particles and transfer electrons from the terminal electron transfer cofactor of PS I, FB, to the nanoparticle. Illumination of these Photosystem I/molecular wire/nanoparticle bioconjugates is able to catalyze the reaction: 2H+ + 2e(-)--> H2. Transfer of the electrons from PS I to the nanoparticle through the molecular wire is not rate-limiting for H2 evolution. Supplying the system with more efficient donor-side electron donating species results in a 5-fold increase in the rate of H2 evolution.  相似文献   
132.
A new category of dinucleating macrocyclic Schiff base ligands with ring sizes from 34- to 52-membered have been synthesised employing metal template procedures involving the reaction of o-phenylenediamine with a series of α,ω-bis(3′-hydroxy-4′-formylphenyloxy)alkanes in the presence of calcium(II), barium(II) or manganese(II). The latter cations act as ‘transient’ templates for formation of the corresponding metal-free Schiff base macrocyclic ligands, H4Ln (where n signifies the number of carbons in each linking bis-alkoxy chain); the macrocycles corresponding to n = 4, 6 and 8 were isolated and characterised while, for n = 1, in which single methylene groups acts as the bridges between salicyl moieties, the cyclic product was used directly for preparation of its dinuclear complex, [Zn2L1], without prior isolation. Evidence for the templating role of barium in the preparation of H4L6 and H4L8 was obtained by isolation of the corresponding species of type H4Ln·2Ba(ClO4)2 (n = 6 or 8) as ‘intermediates’ before generation of the respective metal-free macrocycles. Reaction of zinc(II) acetate with the free macrocycles in methanol yielded complexes of type [Zn2Ln] in all cases. A related non-cyclic ligand, H2L0 and its corresponding mononuclear complex, [ZnL0]·H2O, were also synthesised and its spectral properties compared with those of the macrocyclic derivatives. The elemental analyses, 1H NMR, IR, UV–Vis and MS spectra of the respective zinc complexes in each case were in accord with the formation of the expected 2:2 condensation product. The results of DFT calculations to probe aspects of the electronic and structural natures of both H2L1 and H4L4 are briefly presented.  相似文献   
133.
The development of new methods for enantioselective reactions that generate stereogenic centres within molecules are a cornerstone of organic synthesis. Typically, metal catalysts bearing chiral ligands as well as chiral organocatalysts have been employed for the enantioselective synthesis of organic compounds. In this review, we highlight the recent advances in main group catalysis for enantioselective reactions using the p-block elements (boron, aluminium, phosphorus, bismuth) as a complementary and sustainable approach to generate chiral molecules. Several of these catalysts benefit in terms of high abundance, low toxicity, high selectivity, and excellent reactivity. This minireview summarises the utilisation of chiral p-block element catalysts for asymmetric reactions to generate value-added compounds.  相似文献   
134.
135.
Snakebite remains a significant public health burden globally, disproportionately affecting low-income and impoverished regions of the world. Recently, researchers have begun to focus on the use of small-molecule inhibitors as potential candidates for the neutralisation of key snake venom toxins and as potential field therapies. Bitis vipers represent some of the most medically important as well as frequently encountered snake species in Africa, with a number of species possessing anticoagulant phospholipase A2 (PLA2) toxins that prevent the prothrombinase complex from inducing clot formation. Additionally, species within the genus are known to exert pseudo-procoagulant activity, whereby kallikrein enzymatic toxins cleave fibrinogen to form a weak fibrin clot that rapidly degrades, thereby depleting fibrinogen levels and contributing to the net anticoagulant state. Utilising well-validated coagulation assays measuring time until clot formation, this study addresses the in vitro efficacy of three small molecule enzyme inhibitors (marimastat, prinomastat and varespladib) in neutralising these aforementioned activities. The PLA2 inhibitor varespladib showed the greatest efficacy for the neutralisation of PLA2-driven anticoagulant venom activity, with the metalloproteinase inhibitors prinomastat and marimastat both showing low and highly variable degrees of cross-neutralisation with PLA2 anticoagulant toxicity. However, none of the inhibitors showed efficacy in neutralising the pseudo-procoagulant venom activity exerted by the venom of B. caudalis. Our results highlight the complex nature of snake venoms, for which single-compound treatments will not be universally effective, but combinations might prove highly effective. Despite the limitations of these inhibitors with regards to in vitro kallikrein enzyme pseudo-procoagulant venom activity, our results further support the growing body of literature indicating the potential use of small molecule inhibitors to enhance first-aid treatment of snakebite envenoming, particularly in cases where hospital and thus antivenom treatment is either unavailable or far away.  相似文献   
136.
The reaction of trichlorosilane (HSiCl(3)) with atomic chlorine (Cl) has been investigated by using infrared kinetic spectroscopy of the HCl product. The overall second order rate constant for the reaction has been determined as a function of temperature by using pseudo-first-order kinetic methods. Formation of HCl (nu=0) was monitored on the (nu=1<--0) R(2) line at 2944.914 cm(-1) and that of HCl (nu=1) on the (nu=2<--1) R(2) line at 2839.148 cm(-1). The overall second order rate constant was determined to be (2.8+/-0.1)x10(-11) cm(3) molecule(-1) s(-1) at 296 K. The rate constant shows no pressure dependence and decreases slightly with increased temperature [k=(2.3+/-0.2)x10(-11)e((66+/-3)/T) cm(3) molecule(-1) s(-1)]. Substantial vibrational excitation is measured in the HCl product, with the fraction of HCl (nu=1)/HCl (total)=0.41+/-0.08. These observations are consistent with the reaction being a barrierless hydrogen abstraction reaction. The experimental results are supported by ab initio quantum chemical calculations that show the transition state for abstraction to lie below the energy of the reactants, in disagreement with previously published calculations.  相似文献   
137.
Single crystals of Li4(PO2NH)4 · 4 H2O were obtained by dissolving LiOH and H4(PO2NH)4 · 2 H2O in water and subsequent precipitation with acetone and ethanol followed by slow evaporation of the solvents. The structure of Li4(PO2NH)4 · 4 H2O was solved by single‐crystal X‐ray methods ( (No. 2), a = 489.2(2), b = 853.2(2), c = 880.5(2) pm, α = 101.71(3), β = 102.39(3), γ = 94.88(3)°, Z = 1). The structure is composed of LiO4 tetrahedra and (PO2NH)44? ions. The P4N4 rings of the anions exhibit a slightly distorted chair–1 conformation, which is supported by IR data and has been described by torsion angles, displacement asymmetry parameters and puckering parameters. Via Li+ ions and hydrogen bonds, the tetrametaphosphimate anions are connected forming a three‐dimensional network.  相似文献   
138.
The AOAC Use-Dilution methods do not provide procedures to enumerate the test microbe on stainless steel carriers (penicylinders) or guidance on the expected target populations of the test microbe (i.e., a performance standard). This report describes the procedures used by the U.S. Environmental Protection Agency to enumerate the test microbe (carrier counts) associated with conducting the Use-Dilution method with Staphylococcus aureus (Method 955.15) and Pseudomonas aeruginosa (Method 964.02) and the examination of historical data. The carrier count procedure involves the random selection of carriers, shearing bacterial cells from the carrier surface through sonication, and plating of serially diluted inoculum on trypticase soy agar. For each Use-Dilution test conducted, the official AOAC method was strictly followed for carrier preparation, culture initiation, test culture preparation, and carrier inoculation steps. Carrier count data from 78 Use-Dilution tests conducted over a 6-year period were compiled and analyzed. A mean carrier count of 6.6 logs (approximately 4.0 x 10(6) colony-forming units/carrier) was calculated for both S. aureus and P. aeruginosa. Of the mean values, 95% fell within +/- 2 repeatability standard deviations. The enumeration procedure and target carrier counts are desirable for standardizing the Use-Dilution methods, increasing their reproducibility, and ensuring the quality of the data.  相似文献   
139.
Experimental and modeling studies of the gas-phase chemistry occurring in dilute, hot filament (HF) activated B2H6/H2 and B2H6/CH4/H2 gas mixtures are reported. Spatially resolved relative number densities of B (and H) atoms have been measured by resonance enhanced multiphoton ionization methods, as a function of process conditions (e.g. the HF material and its temperature, the B2H6/H2 mixing ratio, and the presence (or not) of added CH4). Three-dimensional modeling of the H/B chemistry prevailing in such HF activated gas mixtures using a simplified representation of the gas phase chemistry succeeds in reproducing all of the experimentally observed trends, and in illustrating the key role of the "H-shifting" reactions BHx + H <= => BHx-1 + H2 (x = 1-3) in enabling rapid interconversion between the various BHx (x = 0-3) species. CH4 addition, at partial pressures appropriate for growth of boron-doped diamond by chemical vapor deposition methods, leads to approximately 30% reduction in the measured B atom signal near the HF. The modeling suggests that this is mainly due to concomitant H atom depletion near the HF, but it also allows us a first assessment of the possible contributions from B/C coupling reactions upon CH4 addition to HF activated B2H6/H2 gas mixtures.  相似文献   
140.
C(α)-Carboxylic acid esters were treated with excess lithium diisopropylamide, condensed with methyl salicylates or methyl thiosalicylate, followed by acid cyclization to either 4-hydroxy-3-substituted, 2H-1-benzopyran-2-ones (coumarins), or 2H-1-benzothiopyran-2-ones (thiocoumarins).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号