排序方式: 共有34条查询结果,搜索用时 9 毫秒
21.
Narevicius E Libson A Parthey CG Chavez I Narevicius J Even U Raizen MG 《Physical review letters》2008,100(9):093003
We report the stopping of an atomic beam, using a series of pulsed electromagnetic coils. We use a supersonic beam of metastable neon created in a gas discharge as a monochromatic source of paramagnetic atoms. A series of coils is fired in a timed sequence to bring the atoms to near rest, where they are detected on a microchannel plate. Applications to fundamental problems in physics and chemistry are discussed. 相似文献
22.
We study the preparation and manipulation of states involving a small number of interacting particles. By controlling the splitting and fusing of potential wells, we show how to interconvert Mott-insulator-like and trapped BEC-like states. We also discuss the generation of "Schr?dinger cat" states by splitting a microtrap and taking into practical consideration the asymmetry between the resulting wells. These schemes can be used to perform multiparticle interferometry with neutral atoms, where interference effects can be observed only when all the participating particles are measured. 相似文献
23.
Adam Libson Stephen Travis Bannerman Robert J. Clark Thomas R. Mazur Mark G. Raizen 《Hyperfine Interactions》2012,212(1-3):203-212
As the simplest atom, hydrogen has a unique role as a testing ground of fundamental physics. Precision measurements of the hydrogen atomic structure provide stringent tests of current theory, while tritium is an excellent candidate for studies of β-decay and possible measurement of the neutrino rest mass. Furthermore, precision measurement of antihydrogen would allow for tests of fundamental symmetries. Methods demonstrated in our lab provide an avenue by which hydrogen isotopes can be trapped and cooled to near the recoil limit. The atomic coilgun, which we have demonstrated with metastable neon and molecular oxygen, provides a general method of stopping a supersonic beam of any paramagnetic species. This tool provides a method by which hydrogen and its isotopes can be magnetically trapped at around 100 mK using a room temperature apparatus. Another tool developed in our laboratory, single-photon cooling, allows further cooling of a trapped sample to near the recoil limit. This cooling method has already been demonstrated on a trapped sample of rubidium. We report on the progress of implementing these methods to trap and cool hydrogen isotopes, and on the prospects for using cold trapped hydrogen for precision measurements. 相似文献
24.
We report an experimental study of quantum transport for atoms confined in a periodic potential and compare between thermal and Bose-Einstein condensation (BEC) initial conditions. We observe ballistic transport for all values of well depth and initial conditions, and the measured expansion velocity for thermal atoms is in excellent agreement with a single-particle model. For weak wells, the expansion of the BEC is also in excellent agreement with single-particle theory, using an effective temperature. We observe a crossover to a new regime for the BEC case as the well depth is increased, indicating the importance of interactions on quantum transport. 相似文献
25.
We propose a new method of cooling and phase space compression that requires each atom to scatter only one photon. We consider the specific example of rubidium-87 atoms confined to a magnetic trap and provide realistic estimates. Beyond a demonstration in atomic rubidium, this method could enable cooling of atoms and molecules that do not have cycling transitions. 相似文献
26.
We investigate the possibility of quantum (or wave) chaos for the Bogoliubov excitations of a Bose-Einstein condensate in billiards. Because of the mean field interaction in the condensate, the Bogoliubov excitations are very different from the single particle excitations in a noninteracting system. Nevertheless, we predict that the statistical distribution of level spacings is unchanged by mapping the non-Hermitian Bogoliubov operator to a real symmetric matrix. We numerically test our prediction by using a phase shift method for calculating the excitation energies. 相似文献
27.
We propose a quantum tweezer for extracting a desired number of neutral atoms from a reservoir. A trapped Bose-Einstein condensate is used as the reservoir, taking advantage of its coherent nature, which can guarantee a constant outcome. The tweezer is an attractive quantum dot, which may be generated by red-detuned laser light. By moving at certain speeds, the dot can extract a desired number of atoms from the condensate through Landau-Zener tunneling. The feasibility of our quantum tweezer is demonstrated through realistic and extensive model calculations. 相似文献
28.
29.
30.
We demonstrate for the first time the dielectrophoretic trapping and manipulation of a whole animal, the nematode Caenorhabditis elegans. We studied the effect of the electric field on the nematode as a function of field intensity and frequency. We identified a range of electric field intensities and frequencies that trap worms without apparent adverse effect on their viability. Worms tethered by dielectrophoresis (DEP) exhibit behavioral responses to blue light, indicating that at least some of the nervous system functions are unimpaired by the electrical field. DEP is useful to dynamically tether nematodes, sort nematodes according to size, and separate dead worms from live ones. 相似文献