首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
化学   22篇
力学   8篇
数学   5篇
物理学   7篇
  2022年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
  1974年   1篇
  1973年   2篇
  1962年   1篇
  1961年   2篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
21.
Ohne ZusammenfassungTeil einer bei der Naturwissenschaft-Philosophischen Fakultät der Technischen Hochschule Braunschweig eingereichten Dissertation. Referenten: Professor Dr. R. Iglisch und Prof. Dr. H-J. Kanold. Auch Herrn Dr. H. Eltermann bin ich für wertvolle Ratschläge zu Dank verpflichtet.  相似文献   
22.
Self-tuning fuzzy logic controllers (STFLC) for the active control of Marmara Kocaeli Earthquake excited crane structures are studied in this paper. Vibration control using intelligent controllers, such as fuzzy logic has attracted the attention of structural control engineers during the last few years, because fuzzy logic can handle, uncertainties and heuristic knowledge and even non-linearities effectively and easily. The improved seismic control performance can be achieved by converting a simply designed static gain into a real time variable dynamic gain through a self-tuning mechanism. A self-tuning fuzzy logic controller is designed to reduce the vibrations of the crane structure. The simulated system has a five degrees-of-freedom and modeled system was simulated against the ground motion of the Marmara Kocaeli Earthquake (M w =7.4) in Turkey on August 17, 1999. At the end of the study, the time history of the crane bridge and portal legs displacements, accelerations, and frequency responses of the both uncontrolled and controlled cases are presented. Additionally, the performance of the designed STFLC is also compared with a PD controller. Simulations of an earthquake excited bridge and portal legs are performed to prove the validity of proposed control strategy.  相似文献   
23.
Abstract  Stoichiometric ionization constants of some pyrazole carboxylic acids [4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid, 4-benzoyl-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid, 4-(ethoxycarbonyl)-1,5-diphenyl-1H-pyrazole-3-carboxylic acid, 4-(ethoxycarbonyl)-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid, 4-(ethoxycarbonyl)-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid] were determined in ethanol–water mixtures of 50, 60, 70% ethanol (v/v) by a potentiometric titration method. Titrations were performed in an ionic strength of 0.10 M NaCl at 25.0 ± 0.1 °C using an Orion 960 automatic titrator under a nitrogen atmosphere. Using the potentiometric titration data, ionization constants were calculated in three different ways. The effects of structure and solvent on the acidity of pyrazole carboxylic acids are also discussed. Graphical abstract     相似文献   
24.
25.
In this paper, the dynamic behavior of a non-linear eight degrees of freedom vehicle model having active suspensions and a fuzzy logic (FL) controlled passenger seat is examined. The non-linearity occurs due to dry friction on the dampers. Three cases of control strategies are taken into account. In the first case, only the passenger seat is controlled. In the second case, only the vehicle body is controlled. In the third case, both the vehicle body and the passenger seat are fully controlled at the same time. The time responses of the non-linear vehicle model due to road disturbance and the frequency responses are obtained for each control strategy. At the end, the performances of these strategies are compared.  相似文献   
26.
In this paper, the dynamic behaviour of a non-linear eight degrees of freedom vehicle model having active suspensions and passenger seat using Permanent Magnet Synchronous Motor (PMSM) controlled by a Neural Network (NN) controller is examined. A robust NN structure is established by using principle design data from the Matlab diagrams of system functions. In the NN structure, Fast Back-Propagation Algorithm (FBA) is employed. The user inputs a set of 16 variables while the output from the NN consists of f1f16 non-linear functions. Further, the PMSM controller is also determined using the same NN structure. Various tests of the NN structure demonstrated that the model is able to give highly sensitive outputs for vibration condition, even using a more restricted input data set. The non-linearity occurs due to dry friction on the dampers. The vehicle body and the passenger seat using PMSM are fully controlled at the same time. The time responses of the non-linear vehicle model due to road disturbance and the frequency responses are obtained. Finally, uncontrolled and controlled cases are compared. It is seen that seat vibrations of a non-linear full vehicle model are controlled by a NN-based system with almost zero error between desired and achieved outputs.  相似文献   
27.
The structure of bidisperse polyethylene(PE) nanocomposite mixtures of 50:50(by mole) of long and short chains of C160H322/C80H162 and C160H322/C40H82 filled with spherical nanoparticles were investigated by a coarse-grained, on lattice Monte Carlo method using rotational isomeric state theory for short-range and Lennard-Jones for long-range energetic interactions. Simulations were performed to evaluate the effect of wall-to-wall distance between fillers(D), polymer-filler interaction(w) and polydispersity(number of short chains in the mixture) on the behavior of the long PE chains. The results indicate that long chain conformation statistics remain Gaussian regardless of the effects of confinement, interaction strength and polydispersity. The various long PE subchain structures(bridges, dangling ends, trains, and loops) are influenced strongly by confinement whereas monomer-filler interaction and polydispersity did not have any impact. In addition, the average number of subchain segments per filler in bidisperse PE nanocomposites decreased by about 50% compared to the nanocomposite system with monodisperse PE chains. The presence of short PE chains in the polymer matrix leads to a reduction of the repeat unit density of long PE chains at the interface suggesting that the interface is preferentially populated by short chains.  相似文献   
28.
Many bar soaps are processed using continuous processing technologies, including single and twin screw extrusion. However, in spite of the industrial importance of the extrusion-based processing of bar soaps the rheological behavior of bar soaps is poorly understood. Here, the shear viscosity and the formation of gross surface irregularities upon extrusion of the bar soap were investigated using steady torsional, rectangular slit, and capillary flows. Furthermore, the structure development aspects were investigated using wide-angle X-ray diffraction and scanning electron microscopy. It is revealed that the flow and deformation behavior of bar soaps is complicated by the ubiquitous presence of wall slip, viscoplasticity, gross surface irregularities, and various structuring aspects. The orientation of crystallites and the shear stress dependent fracture of a crystalline component of the formulation at the wall during flow were identified as some of the contributing effects to the development of the structure of the bar soap during flow and deformation.  相似文献   
29.
2‐(2‐Amino‐3,5‐dinitrophenyl)‐2‐oxoacetic acid ( 2 ) was obtained from hydrolysis of 5,7‐dinitroisatin ( 1 ) in alkaline media. A novel quinoxaline derivative ( 3 ) was synthesized from the reaction of the same compound ( 1 ) with o‐phenylenediamine. Reacting 2 with ethyl 3‐oxo‐3‐phenylpropanoate yields 6,8‐dinitro‐2‐phenylquinoline‐3,4‐dicarboxylic acid ( 4 ). Then, 4 was converted into new quinoline‐diacylchloride, quinoline‐ester, quinoline‐dicarboxamide, pyridazine, and pyrroledione derivatives ( 5 , 6a , 6b , 6c , 6d , 7a , 7b , 7c , 7d , 8 , 9 , 10a , 10b , 10c , 10d , 11a , 11b , 12 ) with SOCl2, alcohols, amines, and hydrazines, respectively. The structures of synthesized compounds were clarified by 1H NMR, 13C NMR, IR, mass and elemental analysis methods.  相似文献   
30.
Molecules of the title compound (alternative name: p‐nitro­benz­aldehyde phenyl­hydrazone), C13H11N3O2, adopt an E configuration about the azomethine C=N double bond. Molecules are approximately planar and the dihedral angle between the planes of the phenyl rings is 11.62 (9)°. Hydro­gen bonding links mol­ecules related by 42 screw axes to form helices with a pitch of 7.7186 (8) Å.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号