首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   5篇
化学   111篇
晶体学   1篇
力学   5篇
数学   28篇
物理学   30篇
  2023年   1篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   6篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   15篇
  2010年   14篇
  2009年   9篇
  2008年   14篇
  2007年   13篇
  2006年   15篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
171.
The paper reports on covalent linking of a modified amphiphilic polymer, the alkynyl-terminated Zonyl, to azide-terminated nanodiamonds by click chemistry. An analysis of the hybrid particle stability is presented based on size and zeta potential measurements. The antifouling character of the grafted nanodiamonds was investigated using bovine serum albumin as a model protein. The protein adsorption was quantified using a Bradford assay and found to be reduced by 30% in the presence of the Zonyl layer.  相似文献   
172.
Diamond nanoparticles (NDs) have demonstrated great promise as useful materials in a variety of biomedical settings. In this paper, the antimicrobial and antibiofilm activities of variously functionalized NDs against two common bacterial targets Gram‐negative bacterium Escherichia coli and Gram‐positive bacterium Staphylococcus aureus are compared. Hydroxylated (ND‐OH), aminated (ND‐NH2), carboxylated (ND‐COOH), mannose (ND‐Mannose), tri‐thiomannoside (ND‐Man3), or tri‐thiolactoside (ND‐Lac3)‐modified NDs are fabricated and evaluated in the present work. Of these, the mannose‐modified NDs are found to interfere most strongly with the survival of S. aureus, but not to influence the growth of E. coli. In contrast, particles featuring lactosyl units have the opposite effect on S. aureus growth. Sugar‐functionalized NPs reported to display antibacterial effects are rare. Only ND‐COOH particles are seen to have any effect on the growth profile of E. coli, but the effects are moderate. On the other hand, both ND‐NH2 and ND‐COOH are found to inhibit E. coli‐induced biofilm formation at levels comparable to the known E. coli biofilm disruptor, ampicillin (albeit at concentrations of 100 μg mL?1). However, none of the modified particles examined here reveal any significant activity as disruptors of S. aureus‐induced biofilm formation even at the highest concentrations studied.  相似文献   
173.
Monolayers of metal complexes were covalently attached to the surface of lamellar SPR interfaces (Ti/Ag/a-Si(0.63)C(0.37)) for binding histidine-tagged peptides with a controlled molecular orientation. The method is based on the activation of surface acid groups with N-hydroxysuccinimide (NHS), followed by an amidation reaction with (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (NTA). FTIR and X-ray photoelectron spectroscopy (XPS) were used to characterize each surface modification step. The NTA modified SPR interface effectively chelated Cu(2+) ions. Once loaded with metal ions, the modified SPR interface was able to bind specifically to histidine-tagged peptides. The binding process was followed by surface plasmon resonance (SPR) in a droplet based configuration. The Cu(2+)-NTA modified interface showed protein loading comparable to commercially available NTA chips based on dextran chemistry and can thus be regarded as an interesting alternative. The sensor interface can be reused several times due to the easy regeneration step using ethylenediaminetetraacetic acid (EDTA) treatment.  相似文献   
174.
A simple Kronig-Penney model for 1D mesoscopic systems with δ peak potentials is used to study numerically the influence of spatial disorder on conductance fluctuations and distribution at different regimes. The Lévy laws are used to investigate the statistical properties of the eigenstates. It is found that an Anderson transition occurs even in 1D meaning that the disorder can also provide constructive quantum interferences. The critical disorder Wc for this transition is estimated. In these 1D systems, the metallic phase is well characterized by a Gaussian conductance distribution. Indeed, the results relative to conductance distribution are in good agreement with the previous works in 2D and 3D systems for other models. At this transition, the conductance probability distribution has a system size independent shape with large fluctuations in good agreement with previous works.  相似文献   
175.
Raman spectroscopy is a nondestructive technique that can provide information at the molecular level about the biochemicals in tissues. We have investigated the cellular regions in neuroblastoma and ganglioneuroma using Raman spectroscopy and compared their spectral characteristics with those of the corresponding normal adrenal gland. Thin sections from both the frozen and the corresponding formalin‐fixed paraffin‐processed (FFPP) tissues were studied in conjunction with the pathological examination of the tissues. Investigation of the spectral data shows that the normal adrenal gland tissues have higher levels of carotenoids, lipids, and cholesterol compared with the neuroblastoma and ganglioneuroma frozen tissues. However, in comparison with the frozen tissues, the FFPP tissues show a significant alteration of several biochemicals, including the complete removal of carotenoids, lipids, and cholesterol in the adrenal tissues. A quantitative analysis using chemometric methods of principal component analysis and discriminant function analysis of the Raman spectral data obtained from the frozen tissues show a clear‐cut classification among pathological groups with high sensitivity and specificity. We have validated the classification results of the FFPP tissues against a training set data obtained from the archived FFPP tissues of nine other patients. The validation process correctly identified and grouped the data with the training set of normal adrenal gland (>97% of the time) and neuroblastoma (100% of the time) tissues, whereas the validation was not so strong for ganglioneuroma. This study shows that Raman spectroscopy combined with chemometric methods can be successfully used to distinguish neuroblastoma and ganglioneuroma at cellular level in frozen tissue sections. This study also shows that formalin fixation and paraffinization/deparaffinization of tissues can alter their biochemical composition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号