首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   209篇
  国内免费   129篇
化学   898篇
晶体学   16篇
力学   58篇
数学   106篇
物理学   494篇
  2024年   3篇
  2023年   33篇
  2022年   36篇
  2021年   46篇
  2020年   73篇
  2019年   60篇
  2018年   42篇
  2017年   41篇
  2016年   56篇
  2015年   71篇
  2014年   70篇
  2013年   91篇
  2012年   111篇
  2011年   117篇
  2010年   88篇
  2009年   64篇
  2008年   75篇
  2007年   65篇
  2006年   57篇
  2005年   40篇
  2004年   33篇
  2003年   32篇
  2002年   25篇
  2001年   18篇
  2000年   16篇
  1999年   25篇
  1998年   21篇
  1997年   25篇
  1996年   22篇
  1995年   13篇
  1994年   12篇
  1993年   19篇
  1992年   18篇
  1991年   11篇
  1990年   10篇
  1989年   9篇
  1987年   5篇
  1986年   1篇
  1984年   3篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有1572条查询结果,搜索用时 9 毫秒
91.
2-iodobenzonitrile, its derivatives, and various heterocyclic analogues undergo palladium(0)-catalyzed annulation onto diarylacetylenes or bicyclic alkenes to afford 2,3-diarylindenones and polycyclic aromatic ketones in very good to excellent yields. This reaction represents one of the first examples of the addition of an organopalladium moiety to the carbon-nitrogen triple bond of a nitrile. The reaction is compatible with a number of functional groups. A reaction mechanism, as well as a model accounting for the electronic effects of substituents on the aromatic ring of the nitrile, is proposed.  相似文献   
92.
Two‐dimensional (2D) superlattices offer promising technological opportunities in tuning the intercalation chemistry of metal ions. Now, well‐ordered 2D superlattices of monolayer titania and carbon with tunable interlayer‐spacing are synthesized by a molecularly mediated thermally induced approach. The 2D superlattices are vertically encapsulated in hollow carbon nanospheres, which are embedded with TiO2 quantum dots, forming a 0D‐2D‐3D multi‐dimensional architecture. The multi‐dimensional architecture with the 2D superlattices encapsulated inside exhibits a near zero‐strain characteristic and enriched electrochemical reactivity, achieving a highly efficient Na+ storage performance with exceptional rate capability and superior long‐term cyclability.  相似文献   
93.
Epoxy nanocomposites combining high toughness with advantageous functional properties are needed in many fields. However, fabricating high‐performance homogeneous epoxy nanocomposites with traditional methods remains a great challenge. Nacre with outstanding fracture toughness presents an ideal blueprint for the development of future epoxy nanocomposites. Now, high‐performance epoxy‐graphene layered nanocomposites were demonstrated with ultrahigh toughness and temperature‐sensing properties. These nanocomposites are composed of ca. 99 wt % organic epoxy, which is in contrast to the composition of natural nacre (ca. 96 wt % inorganic aragonite). These nanocomposites are named an inverse artificial nacre. The fracture toughness reaches about 4.2 times higher than that of pure epoxy. The electrical resistance is temperature‐sensitive and stable under various humidity conditions. This strategy opens an avenue for fabricating high‐performance epoxy nanocomposites with functional properties.  相似文献   
94.
To elucidate the influence of different terminations on diamond surface interaction, the geometry and electronic structures of the diamond films modified by different terminations (H, F, O, NH2, and OH) are studied by using the first principles method. Strong bonding is formed between the clean diamond surfaces, which suggest an obvious interface interaction. Both H and F terminals have significant effects on the reduction of the interface interactions. Due to the larger difference in electronegativity between C and F, the F termination layer has a higher electron density coverage to give a larger repulsive force. Therefore, the interaction between the F-terminated diamond interfaces is stronger than that between the H-terminated diamond interfaces. The O-terminated diamond surfaces are unstable. The NH2- and OH-terminals have weak interaction due to the presence of large functional group atoms that leads to an electronic offset.  相似文献   
95.
The novel complex [K(18-C-6)]2[Cd(mnt)2][18-C-6-18-crown-6,nmt=1,2-dicyanoethene-1,2-dithiolate,C2S2-(CN)2^2-] was synthesized and characterized by elemental analysis,IR spectrum and X-ray diffraction analysis.The complex displays two-dimensional network structure of [K(18-C-6)] complex segments and [Cd(nmt)2] complex segment bridged by S-K-S,S-K-N and N-K-N interactions between adjacent[K(18-C-6)] and [Cd(mnt)2]units.  相似文献   
96.
~~Pulse radiolysis of one-electron oxidation of rare tricyclic nucleoside derivative@赵红卫$Shanghai Institute of Nuclear Research, Chinese Academy of Sciences! Shanghai 201800,China @江致勤$Department of Chemistry, Tongji Unviersity!Shanghai 200092,China @窦大营$Shanghai Institute of Nuclear Research, Chinese Academy of Sciences! Shanghai 201800,China @吴铁一$Shanghai Institute of Nuclear Research, Chinese Academy of Sciences! Shanghai 201800,China @王文锋$Shanghai…  相似文献   
97.
Tsao  L.  Dou  Kh.  Sun'  G.  Lyu  Yu.  Koroteev  A. M.  Krasnov  G. B. 《Russian Journal of Organic Chemistry》2003,39(3):384-391
The reactivity of melezitose hydroxy groups was studied by tritylation in pyridine with subsequent acetylation. After partial detritylation of the products, acetyl group transfer from position 4 to 6 was observed. The structure of the prepared melezitose derivatives was established on the basis of their IR, 1H, 13C, and 1H-1H COSY NMR, and mass spectra (fast atom bombardment), as well as from the results of model calculations performed with the aid of SGI Indigo Molecule-Pattern-Work-Station software package (Biosym) where the potential energy function was approximated with the CVFF potential. The reactivity of primary hydroxy groups in melezitose was found to decrease in the following order: 6' > 6 6' > 1'.  相似文献   
98.
Two complexes [MnIII4(naphthsao)4(naphthsaoH)4] ( 1 ) and [FeIII6O2(naphthsao)4(O2CPh)6] ( 2 ) [naphthsao = 1‐(1‐hydroxy‐naphthalen‐2‐yl)ethanone oxime] were obtained through the reactions of naphthsao ligand and MnCl2 · 4H2O or FeCl3 · 6H2O in the presence of triethylamine (Et3N). Their structures were determined by X‐ray single crystal diffraction, elemental analysis, and IR spectra. Complex 1 displays 12‐MC‐4 metallacrown structural type with cube‐like configuration and 2 shows an offset stacked 10‐MC‐3 structural type with the ring connectivity containing Fe–O–C–O–Fe–O–N–Fe–O–N. Magnetic susceptibility measurement reveals the ferromagnetic interactions and field‐induced slow relaxation of the magnetization for 1 , whereas out‐of‐phase signal is not observed for 2 .  相似文献   
99.
A new coordination polymer (CP), namely poly[(μ‐4,4′‐bipyridine)(μ3‐3,4′‐oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4′‐obb)(4,4′‐bipy)]n ( 1 ), was prepared by the self‐assembly of Co(NO3)2·6H2O with the rarely used 3,4′‐oxydibenzoic acid (3,4′‐obbH2) ligand and 4,4′‐bipyridine (4,4′‐bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction reveals that each CoII ion is six‐coordinated by four O atoms from three 3,4′‐obb2? ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′‐bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′‐obb2? ligands, affording an eight‐membered Co2O4C2 ring which is further extended into a two‐dimensional [Co(3,4′‐obb)]n sheet along the ab plane via 3,4′‐obb2? functioning as a bidentate bridging ligand. The planes are interlinked into a three‐dimensional [Co(3,4′‐obb)(4,4′‐bipy)]n network by 4,4′‐bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′‐bipy ligands.  相似文献   
100.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号