全文获取类型
收费全文 | 22712篇 |
免费 | 3790篇 |
国内免费 | 3290篇 |
专业分类
化学 | 16580篇 |
晶体学 | 343篇 |
力学 | 1368篇 |
综合类 | 239篇 |
数学 | 2587篇 |
物理学 | 8675篇 |
出版年
2024年 | 72篇 |
2023年 | 431篇 |
2022年 | 786篇 |
2021年 | 863篇 |
2020年 | 951篇 |
2019年 | 911篇 |
2018年 | 789篇 |
2017年 | 706篇 |
2016年 | 1095篇 |
2015年 | 1120篇 |
2014年 | 1435篇 |
2013年 | 1776篇 |
2012年 | 1979篇 |
2011年 | 2019篇 |
2010年 | 1527篇 |
2009年 | 1351篇 |
2008年 | 1553篇 |
2007年 | 1472篇 |
2006年 | 1317篇 |
2005年 | 1145篇 |
2004年 | 850篇 |
2003年 | 727篇 |
2002年 | 753篇 |
2001年 | 675篇 |
2000年 | 470篇 |
1999年 | 424篇 |
1998年 | 351篇 |
1997年 | 320篇 |
1996年 | 331篇 |
1995年 | 265篇 |
1994年 | 230篇 |
1993年 | 207篇 |
1992年 | 159篇 |
1991年 | 149篇 |
1990年 | 111篇 |
1989年 | 106篇 |
1988年 | 73篇 |
1987年 | 54篇 |
1986年 | 42篇 |
1985年 | 55篇 |
1984年 | 48篇 |
1983年 | 25篇 |
1982年 | 21篇 |
1981年 | 13篇 |
1980年 | 13篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1957年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The role of tunneling for two proton-transfer steps in the reactions catalyzed by triosephosphate isomerase (TIM) has been studied. One step is the rate-limiting proton transfer from Calpha in the substrate to Glu 165, and the other is an intrasubstrate proton transfer proposed for the isomerization of the enediolate intermediate. The latter, which is not important in the wild-type enzyme but is a useful model system because of its simplicity, has also been examined in the gas phase and in solution. Variational transition-state theory with semiclassical ground-state tunneling was used for the calculation with potential energy surface determined by an AM1 method specifically parametrized for the TIM system. The effect of tunneling on the reaction rate was found to be less than a factor of 10 at room temperature; the tunneling becomes more important at lower temperature, as expected. The imaginary frequency (barrier) mode and modes that have large contributions to the reaction path curvature are localized on the atoms in the active site, within 4 A of the substrate. This suggests that only a small number of atoms that are close to the substrate and their motions (e.g., donor-acceptor vibration) directly determine the magnitude of tunneling. Atoms that are farther away influence the effect of tunneling indirectly by modulating the energetics of the proton transfer. For the intramolecular proton transfer, tunneling was found to be most important in the gas phase, to be similar in the enzyme, and to be the smallest in water. The major reason for this trend is that the barrier frequency is substantially lower in solution than in the gas phase and enzyme; the broader solution barrier is caused by the strong electrostatic interaction between the highly charged solute and the polar solvent molecules. Analysis of isotope effects showed that the conventional Arrenhius parameters are more useful as experimental criteria for determining the magnitude of tunneling than the widely used Swain-Schaad exponent (SSE). For the primary SSE, although values larger than the transition-state theory limit (3.3) occur when tunneling is included, there is no clear relationship between the calculated magnitudes of tunneling and the SSE. Also, the temperature dependence of the primary SSE is rather complex; the value of SSE tends to decrease as the temperature is lowered (i.e., when tunneling becomes more significant). For the secondary SSE, the results suggest that it is more relevant for evaluating the "coupled motion" between the secondary hydrogen and the reaction coordinate than the magnitude of tunneling. Although tunneling makes a significant contribution to the rate of proton transfer, it appears not to be a major aspect of the catalysis by TIM at room temperature; i.e., the tunneling factor of 10 is "small" relative to the overall rate acceleration by 10(9). For the intramolecular proton transfer, the tunneling in the enzyme is larger by a factor of 5 than in solution. 相似文献
42.
Wei QH Zhang LY Yin GQ Shi LX Chen ZN 《Journal of the American Chemical Society》2004,126(32):9940-9941
Unusual AuI-AgI heterometallic complexes [Au5Ag8(mu-dppm)4{1,2,3-C6(C6H4R-4)3}(CCC6H4R-4)7]3+ (R = H 1, CH3 2, But 3) were isolated by reactions of polymeric silver arylacetylides (AgCCC6H4R-4)n with binuclear gold component [Au2(mu-dppm)2(MeCN)2]2+ (dppm = bis(diphenylphosphino)methane), in which cyclotrimerization of arylacetylide -CCC6H4R-4 affords trianion {1,2,3-C6(C6H4R-4)3}3- with an unprecedented mu5-bonding mode. Compounds 1(SbF6)3-3(SbF6)3 exhibit intense photoluminescence derived from an MLCT (Au5Ag8 --> CCC6H4R-4) transition, mixed with a metal cluster-centered excited states. 相似文献
43.
Arylvinylidenecyclopropanes undergo a novel reaction upon heating at 150 °C with diaryl diselenide to give the corresponding 1,2-diarylselenocyclopentene derivatives in good to high yields within 1.5 h. The further transformation of 1,2-diarylselenocyclopentene derivatives has been disclosed. 相似文献
44.
The enantioselective hydrogenation of endocyclic enones has been a historical problem for homogeneous catalysis.We herein report an efficient method to reduce e... 相似文献
45.
中药材重金属元素快速检测对污染监控及人们健康具有重要意义。激光诱导击穿光谱技术(Laser Induced Breakdown Spectroscopy, LIBS)属于一种快速检测方法,研磨压片等预处理方法相对样品消解已有所简化,但破坏了样品的物理性质,且不能满足中药材大宗品种、大批量检测需求。若进一步简化样品预处理,将更加凸显LIBS快速检测的优势。本文建立了激光诱导击穿光谱技术(LIBS)快速微损检测中药材样品重金属元素定标方法。线性相关系数R2为0.7764,建立的微损定标曲线线性可用于切片党参LIBS快速检测,对待测党参切片样品检测平均相对误差为3.74%,与电感耦合等离子体质谱法(ICP-MS)对比,相关系数R2为0.7957,验证了LIBS技术微损检测的可行性。制备的党参参考定标样品可多次重复用于待测样定标和仪器标定等。实验对待测党参样品仅进行切片处理,避免了研磨、压片等预处理,更加充分地体现LIBS快速检测的优势,为LIBS技术应用于中药材重金属元素快检等领域提供了一种新方法。 相似文献
46.
47.
Kai Sun Anzai Shi Yan Liu Xiaolan Chen Panjie Xiang Xiaotong Wang Lingbo Qu Bing Yu 《Chemical science》2022,13(19):5659
General photoactivation of electron donor–acceptor (EDA) complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane with visible light or natural sunlight was discovered. This practical and efficient mode enables the production of aryl radicals under mild conditions, providing an unrealized opportunity for two-step para-selective C–H functionalization of complex arenes. The novel mode for generating aryl radicals via an EDA complex was well supported by UV-vis absorbance measurements, nuclear magnetic resonance titration experiments, and density functional theory (DFT) calculations. The method was applied to the regio- and stereo-selective arylation of various N-heterocycles under mild conditions, yielding an assembly of challengingly linked heteroaryl–(hetero)aryl products. Remarkably, the meaningful couplings of bioactive molecules with structurally complex drugs or agricultural pharmaceuticals were achieved to display favorable in vitro antitumor activities, which will be of great value in academia or industry.General photoactivation of EDA complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane was discovered. This practical mode enables the generation of aryl radicals for C–H functionalization of arenes. 相似文献
48.
In order to improve the transmission efficiency and security of image encryption, we combined a ZUC stream cipher and chaotic compressed sensing to perform image encryption. The parallel compressed sensing method is adopted to ensure the encryption and decryption efficiency. The ZUC stream cipher is used to sample the one-dimensional chaotic map to reduce the correlation between elements and improve the randomness of the chaotic sequence. The compressed sensing measurement matrix is constructed by using the sampled chaotic sequence to improve the image restoration effect. In order to reduce the block effect after the parallel compressed sensing operation, we also propose a method of a random block of images. Simulation analysis shows that the algorithm demonstrated better encryption and compression performance. 相似文献
49.
Mingfei Ji Zongtao Chai Jie Chen Gang Li Qiang Li Miao Li Yelei Ding Shaoyong Lu Guanqun Ju Jianquan Hou 《Molecules (Basel, Switzerland)》2022,27(13)
Small ubiquitin-related modifier (SUMO)-specific protease 1 (SENP1) is a cysteine protease that catalyzes the cleavage of the C-terminus of SUMO1 for the processing of SUMO precursors and deSUMOylation of target proteins. SENP1 is considered to be a promising target for the treatment of hepatocellular carcinoma (HCC) and prostate cancer. SENP1 Gln597 is located at the unstructured loop connecting the helices α4 to α5. The Q597A mutation of SENP1 allosterically disrupts the hydrolytic reaction of SUMO1 through an unknown mechanism. Here, extensive multiple replicates of microsecond molecular dynamics (MD) simulations, coupled with principal component analysis, dynamic cross-correlation analysis, community network analysis, and binding free energy calculations, were performed to elucidate the detailed mechanism. Our MD simulations showed that the Q597A mutation induced marked dynamic conformational changes in SENP1, especially in the unstructured loop connecting the helices α4 to α5 which the mutation site occupies. Moreover, the Q597A mutation caused conformational changes to catalytic Cys603 and His533 at the active site, which might impair the catalytic activity of SENP1 in processing SUMO1. Moreover, binding free energy calculations revealed that the Q597A mutation had a minor effect on the binding affinity of SUMO1 to SENP1. Together, these results may broaden our understanding of the allosteric modulation of the SENP1−SUMO1 complex. 相似文献
50.
A solvent-free route based on solid raw materials affords higher product yield and lower waste production compared to the traditional hydrothermal synthesis. However, the as-made zeolites usually present blocky aggregation states, limiting their mass transfer and exposure of active sites in catalytic applications. Herein, highly dispersed nanosized hierarchical Beta zeolites with varied Si/Al ratios were prepared via steam-assisted crystallization from ball-milled solid raw materials. Thanks to the sufficient mixing of solid raw materials and favorable migration of solid mixture, nanosized Beta zeolites are obtained that are assembled from nanoparticles (∼15 nm) and possess abundant interconnected intraparticle mesopores. The strategy can also be extended to synthesize nanosized hierarchical ZSM-5 zeolites. The as-prepared Beta zeolite (Si/Al = 10) exhibits outstanding catalytic performance in conversion of lactic acid to lactide (as high as 77.5% in yield). This work provides avenues for simple and cost-efficient synthesis of highly dispersed nanosized hierarchical zeolites, promising their important catalytic applications.A cost-effective synthesis strategy based on steam-assisted crystallization from ball-milled solid raw materials is developed to prepare a highly dispersed nanosized hierarchical Beta zeolite for conversion of lactic acid (LA) to lactide (LT). 相似文献