首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19833篇
  免费   3202篇
  国内免费   2823篇
化学   14038篇
晶体学   317篇
力学   1382篇
综合类   195篇
数学   2188篇
物理学   7738篇
  2024年   38篇
  2023年   279篇
  2022年   458篇
  2021年   599篇
  2020年   749篇
  2019年   661篇
  2018年   616篇
  2017年   599篇
  2016年   855篇
  2015年   886篇
  2014年   1143篇
  2013年   1492篇
  2012年   1577篇
  2011年   1735篇
  2010年   1269篇
  2009年   1283篇
  2008年   1405篇
  2007年   1336篇
  2006年   1225篇
  2005年   1051篇
  2004年   824篇
  2003年   651篇
  2002年   603篇
  2001年   570篇
  2000年   452篇
  1999年   443篇
  1998年   409篇
  1997年   343篇
  1996年   342篇
  1995年   278篇
  1994年   276篇
  1993年   201篇
  1992年   171篇
  1991年   155篇
  1990年   161篇
  1989年   96篇
  1988年   89篇
  1987年   98篇
  1986年   91篇
  1985年   82篇
  1984年   52篇
  1983年   36篇
  1982年   37篇
  1981年   27篇
  1980年   20篇
  1979年   16篇
  1978年   14篇
  1977年   8篇
  1976年   8篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
991.
为了准确测定板栗中矿物元素和稀土元素的含量水平,采用冷冻干燥方式预处理样品,选用硝酸和过氧化氢体系微波消解样品,结合电感耦合等离子体质谱技术,建立了板栗中钠(Na)、钾(K)、镁(Mg)、锰(Mn)、铁(Fe)、钒(V)、钴(Co)等19种矿物元素及镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y)等15种稀土元素的同时分析测定方法。方法检出限为0.0027~0.78μg/L,相对标准偏差为1.4%~6.3%。通过国家标准物质GBW10019苹果的准确度实验验证,测定结果均在标准证书值范围内。实验结果表明,方法适用于板栗中矿物元素及稀土元素的同时测定。  相似文献   
992.
A high-temperature proton exchange membrane with high proton conductivity over a wide humidity range still remains a challenge. PBI dendrimer containing triazine rings (TPBI) was synthesized to approach this aim considering its high content of hygroscopic terminal groups and of larger free volume. A novel proton conductor previously synthesized (zirconium 3-sulfopropyl phosphonate, ZrSP) was doped due to its good proton conductivity over a wide humidity range. TPBI was post-crosslinked with a tetrafunctional epoxy resin (N,N,N′,N′-tetraglycidyl-4,4′-diaminodiphenylmethane, TGDDM) to enhance the mechanical stability at low cross-linking degrees, which allowed high doping levels of ZrSP, and thus, high conductivity. The prepared membranes (TPBI-TGDDM/ZrSP) showed good thermal stability, high proton conductivity over wide humidity range, and good dimensional stability. At suitable degrees of branching, TPBI-TGDDM/ZrSP exhibited superior mechanical property, oxidative stability, methanol barrier property, and membrane selectivity than its linear analog (mPBI-TGDDM/ZrSP). As ZrSP instead of PA was applied as the proton conductor, TPBI-TGDDM/ZrSP showed good durability of proton conductivity, especially in comparison with TPBI-TGDDM/PA, which highly retarded decline in conductivity caused by PA leaking. The proton conductivity at 180 °C of TPBI(20)-TGDDM(10)/ZrSP(50) achieved 142, 84.2 and 23.6 mS cm?1 at 100%, 50%, and 0 RH, respectively.  相似文献   
993.
The rational selection of organic reactions in polymer synthesis is an important research content of polymer science. In recent years, multicomponent reaction as an efficient and green synthesis method has attracted the wide attention of researchers, injecting new and powerful vitality into the field of polymer synthesis. In the study of multicomponent reaction, researchers found the intersection of multicomponent reaction and click chemistry and put forward the concept of Multicomponent Click Reaction (MCR-Click), which is a kind of Multicomponent Reaction with high activity, atomic economy, and some green chemical properties. The application of MCR in polymer chemistry is reviewed in this paper. It is expected that this reaction will arouse the attention of polymer chemists and play a new role in polymer science.  相似文献   
994.
Nitrogen transfer from cyanide anion to an aldehyde is emerging as a promising method for the synthesis of aromatic nitriles. However, this method still suffers from a disadvantage that a use of stoichiometric Cu(II) or Cu(I) salts is required to enable the reaction. As we report herein, we overcame this drawback and developed a catalytic method for nitrogen transfer from cyanide anion to an alcohol via the complete cleavage of the C≡N triple bond using phen/Cu2O as the catalyst. The present condition allowed a series of benzyl alcohols to be smoothly converted into aromatic nitriles in moderate to high yields. In addition, the present method could be extended to the conversion of cinnamic alcohol to 3-phenylacrylonitrile.  相似文献   
995.
Morphologically and dimensionally controlled growth of Ag nanocrystals has long been plagued by surfactants or capping agents that complicate downstream applications, unstable Ag salts that impaired the reproducibility, and multistep seed injection that is troublesome and time-consuming. Here, we report a one-pot electro-chemical method to fast (∼2 min) produce Ag nanoparticles from commercial bulk Ag materials in a nitric acid solution, eliminating any need for surfactants or capping agents. Their size can be easily manipulated in an unprecedentedly wide range from 35 to 660 nm. Furthermore, the Ag nanoparticles are directly grown on the Ag substrate, highly desirable for promising applications such as catalysis and plasmonics. The mechanistic studies reveal that the concentration of Ag+ in the diffusion layer nearby the surface, controlled by the magnitude and duration of voltage, is critical in governing the nanoparticle formation (<1.3 mM) and its dimensional adjustability.  相似文献   
996.
To study the influence of different concentrations of zinc oxide (ZnO)/silicon dioxide (SiO2) composite coating on hydrophobic property and mechanical stability of paper mulch film, three kinds of ZnO/SiO2 composite coating paper mulch films (2%, 4%, 6%) with different coating substance contents were prepared by brush coating method. Through particle size analysis, contact angle, rolling angle and mechanical stability test, combined with scanning electron microscope, three-dimensional morphology and roughness measuring instrument, the optimal concentration of ZnO/SiO2 composite coated paper mulch film was screened out. Through acid-base salt corrosion test, silver mirror reaction and surface self-cleaning, the optimal concentration of composite coated paper mulch film was compared with the original paper mulch film to prove its excellent chemical stability and hydrophobicity. The results show that the paper mulch film with 4% coating material has excellent hydrophobicity and mechanical stability, can effectively reduce the surface roughness of paper mulch film, and has remarkable effects in resisting acid, alkali and salt and self-cleaning.  相似文献   
997.
Collector OA, oleic acid, is widely used industrially for fluorite flotation. Low selectivity, dispersibility and collecting capability of the OA collector are always observed. In this study, compared with flotation of dolomite, a collector mixture of OA and SPE (styrylphenol polyoxyethylene ether) demonstrated significantly better performances for the fluorite. An optimal mass ratio 4 : 1 OA : SPE was found, and the recovery of fluorite was increased from over 85 % to more than 94 % compared with pure OA. Furthermore, the dosage of the collector agent was reduced from 50 mg mL−1 to 20 mg mL−1, which did not negatively impact the recovery of dolomite. The results from the contact angle tests indicated that SPE selectively increased the surface hydrophobicity of fluorite but had little effect on dolomite. Besides, zeta potential measurements and IR analyses revealed that the addition of SPE led to strong chemical adsorption on the surface of fluorite, resulting in a significant difference in the flotation performances of the two minerals. Therefore, SPE-emulsified OA is corroborated to prompt more selectivity and collecting capability on flotation of fluorite over dolomite.  相似文献   
998.
The areca (Areca catechu L.) nut kernel (ANK) is a good potential protein source for its high protein content of 9.89–14.62 g/100 g and a high yield of around 300,000 tons per year in China. However, utilization of the areca nut kernel is limited. To expand the usage of ANK in pharmaceutical or foods industries, areca nut kernel globulin was extracted and angiotensin-I converting enzyme (ACE) inhibition peptides were prepared and identified using gel chromatography, reversed phase HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening. Finally, a novel ACE-inhibitory heptapeptide (Ala–Pro–Lys–Ile–Glu–Glu–Val) was identified and chemically synthesized. The combination pattern between APKIEEV and ACE, and the inhibition kinetics, antihypertensive effect and endothlein-1 inhibition activity of APKIEEV were studied. The results of the molecular docking demonstrated that APKIEEV could bind to four active sites (not the key active sites) of ACE via short hydrogen bonds and demonstrated high ACE-inhibitory activity (IC50: 550.41 μmol/L). Moreover, APKIEEV exhibited a significantly lowering effect on both the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats, and had considerable suppression ability on intracellular endothelin-1. These results highlight the potential usage of APKIEEV as ingredients of antihypertensive drugs or functional foods.  相似文献   
999.
We here report glycosyl sulfoxides appended with an aryl iodide moiety as readily available, air and moisture stable precursors to glycosyl radicals. These glycosyl sulfoxides could be converted to glycosyl radicals by way of a rapid and efficient intramolecular radical substitution event. The use of this type of precursors enabled the synthesis of various complex C‐linked glycoconjugates under mild conditions. This reaction could be performed in aqueous media and is amenable to the synthesis of glycopeptidomimetics and carbohydrate‐DNA conjugates.  相似文献   
1000.
To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase‐junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c‐NiP2/m‐NiP2) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm?2) for NiP2‐650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号